FEATURES - ► Industrial Standard DIP-24 Package - ► Fully Regulated Output Voltage - ► Ultra-high I/O Isolation 6000VDC with Reinforced Insulation, rate for 300Vrms Working Voltage - ► Common Mode Transient Immunity: 15KV/µs - ▶ Qualified for IGBT and High Isolation Applications - ▶ Operating Ambient Temp. Range -40°C to +80°C - ► No Min. Load Requirement - ► Short Circuit Protection - ▶ Designed-in Conducted EMI meets EN55022 Class A & FCC Level A - ► UL/cUL/IEC/EN 60950-1 Safety Approval & CE Marking ## PRODUCT OVERVIEW The MINMAX MIDER03-HI series is a new range of isolated 3W DC/DC converter modules in DIP-24 package which feature a regulated output and Ultra-high I/O Isolation voltage rated for 6000VDC with reinforced insulation. A very high common mode transient immunity with 15KV/µs qualifies these product for IGBT driver applications. Further features include short circuit protection and no min. load requirement and EN55022 class A compliant as well. There are 15 Models available for 5, 12, and 24VDC input. These converters offer a cost-effective solution for wind turbine, solar panel, transporation systems, industrial control equipments and some IGBT driver applications where a very high I/O-isolation is required. | Model Selection Gu | ide | | | | | | | |--------------------|------------------|-------------------|----------------|---------------|----------|-------------------------|----------------------| | Model
Number | Input
Voltage | Output
Voltage | Output Current | Input Current | | Max. capacitive
Load | Efficiency
(typ.) | | | | | Max. | @Max. Load | @No Load | | @Max. Load | | | VDC | VDC | mA | mA(typ.) | mA(typ.) | μF | % | | MIDER03-05S05HI | | 5 | 600 | 1017 | 130 | | 59 | | MIDER03-05S12HI | | 12 | 250 | 984 | | 470 | 61 | | MIDER03-05S15HI | 5 ±10% | 15 | 200 | 960 | | 220 # | 62 | | MIDER03-05D12HI | | ±12 | ±125 | 1000 | | | 60 | | MIDER03-05D15HI | | ±15 | ±100 | 1000 | | | 60 | | MIDER03-12S05HI | | 5 | 600 | 424 | | | 59 | | MIDER03-12S12HI | | 12 | 250 | 410 | | 470 | 61 | | MIDER03-12S15HI | 12 ±10% | 15 | 200 | 400 | 60 | | 62 | | MIDER03-12D12HI | | ±12 | ±125 | 420 | | 220 # | 60 | | MIDER03-12D15HI | | ±15 | ±100 | 420 | | | 60 | | MIDER03-24S05HI | | 5 | 600 | 212 | | 470 | 59 | | MIDER03-24S12HI | 1 | 12 | 250 | 198 | | | 63 | | MIDER03-24S15HI | 24 ±10% | 15 | 200 | 195 | 40 | | 64 | | MIDER03-24D12HI | 1 | ±12 | ±125 | 210 | | | 60 | | MIDER03-24D15HI | 1 | ±15 | ±100 | 210 | | 220 # | 60 | # For each output | Input Specifications | | | | | |-----------------------------------|------------------|--|------|------| | Parameter | Model | Min. | Max. | Unit | | | 5V Input Models | 4.5 | 5.5 | | | Input Voltage Range | 12V Input Models | 10.8 | 13.2 | | | | 24V Input Models | 21.6 | 26.4 | VDC | | | 5V Input Models | -0.7 | 7.5 | VDC | | Input Surge Voltage (1 sec. max.) | 12V Input Models | -0.7 | 15 | | | mput Jurge Voltage (1 3ee. max.) | 24V Input Models | -0.7 | 30 | | | Short Circuit Input Power | | | 2500 | mW | | Input Filter | All Models | Internal Pi Type | | | | Conducted EMI | | Compliance to EN 55022, class A and FCC part 15, class A | | | E-mail:sales@minmax.com.tw Tel:886-6-2923150 | Output Specifications | | | | | | |---------------------------------|--------------------------------|------|-------|-------|-------------------| | Parameter | Conditions | Min. | Тур. | Max. | Unit | | Output Voltage Setting Accuracy | | | | ±4.0 | %Vnom. | | Output Voltage Balance | Dual Output, Balanced Loads | | ±2.0 | ±4.0 | % | | Line Regulation | Vin=Min. to Max. @Full Load | | ±0.3 | ±0.5 | % | | Load Regulation | lo=10% to 100% | | ±0.5 | ±1.0 | % | | Minimum Load | No minimum Load Requirement | | | | | | Ripple & Noise | 0-20 MHz Bandwidth | | | 50 | mV _{P-P} | | Temperature Coefficient | | | ±0.01 | ±0.02 | %/°C | | Short Circuit Protection | Continuous, Automatic Recovery | | | | | | Isolation, Safety Standards | | | | | | |--------------------------------|---|---|------|------|--------| | Parameter | Conditions | Min. | Тур. | Max. | Unit | | I/O Isolation Voltage | 60 Seconds Reinforced insulation, rated for 300Vrms working voltage | 3000 | | | VACrms | | | Tested for 1 second | 6000 | | | VDC | | I/O Isolation Resistance | 500 VDC | 10 | | | GΩ | | I/O Isolation Capacitance | 100KHz, 1V | | 20 | | pF | | Common Mode Transient Immunity | | 15 | | | KV/µs | | Safety Approvals | UL/cUL 60950-1 recognition(UL certification) | UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report) | | | | | General Specifications | | | | | | |------------------------|-----------------------------------|------|-----------|------|-------| | Parameter | Conditions | Min. | Тур. | Max. | Unit | | Switching Frequency | | 25 | 60 | | KHz | | MTBF(calculated) | MIL-HDBK-217F@25°C, Ground Benign | | 1,000,000 | | Hours | | Environmental Specifications | | | | | |--|--------------------|------|------|----------| | Parameter | Conditions | Min. | Max. | Unit | | Operating Ambient Temperature Range (See Power Derating Curve) | Natural Convection | -40 | +75 | °C | | Case Temperature | | | +95 | °C | | Storage Temperature Range | | -50 | +125 | °C | | Humidity (non condensing) | | | 95 | % rel. H | | Cooling | Natural Convection | | | | | Lead Temperature (1.5mm from case for 10Sec.) | | | 260 | °C | E-mail:sales@minmax.com.tw Tel:886-6-2923150 ### Notes - 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted. - We recommend to protect the converter by a slow blow fuse in the input supply line. - 3 Other input and output voltage may be available, please contact factory. - 4 That "natural convection" is about 20LFM but is not equal to still air (0 LFM). - 5 Specifications are subject to change without notice. # Package Specifications | Pin Connections | | | | | |-----------------|---------------|-------------|--|--| | Pin | Single Output | Dual Output | | | | 1 | +Vin | +Vin | | | | 2 | +Vin | +Vin | | | | 10 | No Pin | Common | | | | 11 | No Pin | Common | | | | 12 | -Vout | No Pin | | | | 13 | +Vout | -Vout | | | | 15 | No Pin | +Vout | | | | 23 | -Vin | -Vin | | | | 24 | -Vin | -Vin | | | - ► All dimensions in mm (inches) - ► Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.01) ► Pins ±0.05(±0.002) ## **Physical Characteristics** | Case Size | : 31.8x20.3x10.5 mm (1.25x0.80x0.41 inches) | | |---------------|---|--| | Case Material | : Non-Conductive Black Plastic (flammability to UL 94V-0 rated) | | | Pin Material | : Copper Alloy with Gold Plate Over Nickel Subplate | | | Weight | : 12.4g | | ### **Test Setup** Input Reflected-Ripple Current Test Setup Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz. #### Peak-to-Peak Output Noise Measurement Test Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter. #### **Technical Notes** Maximum Capacitive Load The MIDER03-HI series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 220µF maximum capacitive load for dual outputs and 470µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet. #### Input Source Impedance The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a $4.7\mu\text{F}$ for the 5V input devices and a $2.2\mu\text{F}$ for the 12V and 24V devices. #### Output Ripple Reduction A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1.5µF capacitors at the output. ### Thermal Considerations Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.