

Electric Characteristic Note

APM-40 Series EC Note

AC-DC Power Module 40W, Industrial & Medical Safety

Features

- ► Fully Encapsulated Plastic Case for PCB, Chassis and DIN-Rail **Mounting Version**
- ► Universal Input 85~264VAC, 47~440Hz
- ► I/O Isolation 4000VAC with Reinforced Insulation
- ➤ Operating Ambient Temp. Range -40°C to +80°C
- Overload/Voltage and Short Circuit Protection
- ► EMI Emission EN 55011/32 Class B Approved
- ► EMC Immunity EN 61000-4-2,3,4,5,6,8,11 Approved
- ▶ Medical EMC Standard with 4th Edition of EMI EN 55011 & EMS EN 60601-1-2 Approved
- ► Medical Safety with 2xMOPP per 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved
- ► UL508 Safety Approval Specifically for Industrial Application
- Risk Management Report Acquisition according to ISO 14971
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ▶ Distributed power architectures
- ➤ Workstations
- Computer equipment
- Communications equipment

Product Overview

Introducing the MINMAX APM-40 series - an innovative lineup of fully encapsulated AC-DC power modules designed to meet the highest standards in performance, safety, and reliability. Engineered to excel in challenging environments, these high-performance products boast an extended operating temperature range of -40°C to +80°C, ensuring optimal functionality in diverse applications.

With a universal input voltage of 85-264VAC and comprehensive safety approvals, including UL/IEC/EN certifications for medical safety and UL 508 listing, the APM-40 series is well-equipped for integration into products targeting global markets. These power supply modules have also earned the EMI Emission EN 55011/32 Class B approval, attesting to their compliance with stringent electromagnetic interference standards.

In alignment with ISO 14971 Medical Device Risk Management, the APM-40 series undergoes a rigorous risk assessment process. This ensures that these power modules not only meet the demanding criteria for performance but also adhere to safety benchmarks outlined in ISO 14971. In summary, the APM-40 series power modules provide an ideal solution for a wide range of space-critical applications in commercial, medical, and industrial electronic equipment.

Table of contents

Rev:5

Model Selection GuideP2	Package Specifications for screw terminal with DIN Rail MountingP11
Input SpecificationsP2	Screw terminal with DIN Rail MountingP11
Output SpecificationsP2	Recommended Pad Layout for Single & Dual Output Converter
General SpecificationsP2	Packaging Information for BoxP12
EMC SpecificationsP3	Wave Soldering ConsiderationsP13
Environmental SpecificationsP3	Hand Welding ParameterP13
Characteristic CurvesP4	Part Number StructureP14
Package Specifications PCB MountingP10	MTBF and ReliabilityP14
Package Specifications Chassis Mounting with screw terminalP10	

Date:2024-12-23

APM-40 Series - EC Notes

Model Selection (Guide					
Model	Output	Output	In	put	Max. capacitive	Efficiency
Number	Voltage	Current	Cur	rent	Load	(typ.)
			115VAC, 60Hz	115VAC, 60Hz 230VAC, 50Hz		
		Max.	@Max	@Max. Load		@Max. Load, 115VAC
	VDC	mA	mA(typ.)		μF	%
APM-40S05	5	8000	716	429	8000	81
APM-40S12	12	3330	689	414	3900	84
APM-40S15	15	2660	680	408	3900	85
APM-40S24	24	1660	687	413	680	84
APM-40D12	±12	±1660	687	413	1500#	84
APM-40D15	±15	±1330	680	408	1000#	85

For each output

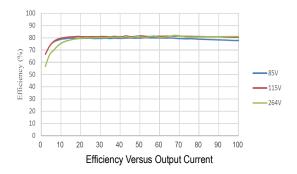
Input Specifications						
Parameter	Conditions / Model Min. Typ. Max. Unit					
AC Voltage Input Range		85		264	VAC	
Input Frequency Range	A II A A	47		440	Hz	
DC Voltage Input Range	All M	120		370	VDC	
No-Load Power Consumption				0.3	W	
Land Orange	115VAC	0-14-04-4-4-0590			30	Α
Inrush Current	230VAC	/AC Cold Start at 25°C			60	Α

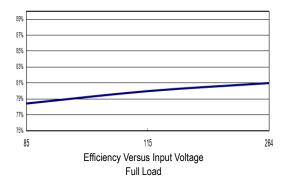
Output Specifications						
Parameter	Condition	ons / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0		%Vnom.
Line Regulation	Vin=Min. to N	Max. @Full Load		±0.5		%
Local December	L- 00/ L- 4000/	Single Output Model		±1.0		%
Load Regulation	lo=0% to 100%	Dual Output Models		±2.0		%
Minimum Load	No minimum Load Requirement					
Diagle 9 Maios	0-20 MHz Bandwidth	5V Output Models		1.5	1.8	%V _{PP} of Vo
Ripple & Noise ₍₃₎		Other Output Models		1.0	1.3	%V _{PP} of Vo
Over Voltage Protection	Zener d	liode clamp		120		% of Vo
Temperature Coefficient				±0.02		%/°C
Overshoot					5	%
	85VAC, Hiccup Mode, auto-recovery		405			0/ 1
Over Load Protection	(long term overload condition may cause damage)		105			% Inom.
Short Circuit Protection	Hiccup mode, Automatic Recovery					

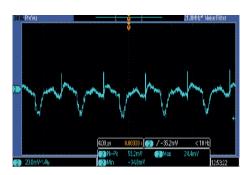
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds	4000			VAC
Leakage Current			80		μA
I/O Isolation Resistance	500 VDC	1000			MΩ
Switching Frequency			130		kHz
Hold Tiese	115VAC, 60Hz		25		ms
Hold-up Time	230VAC, 50Hz		80		ms
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	200,000 Hours			Hours
	UL/cUL 60950-1, CSA	C22.2 No 6095	50-1		
Cafety Otan days	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1 EC/EN 60950-1, IEC/EN 60601-1 3.2 Edition 2xMOPP				
Safety Standards					
	UL508, CSA C22.2 No.107.1-01				
UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1 (CB-report), UL/cUL 508 listed ce					ificate
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)				
	ANSI/AAMI ES60601-1 2xMOPP recognition (UL certificate), IEC/EN 60601-1 3.2 Edition (CB-report)				

Date:2024-12-23 Rev:5 APM-40 Series – EC Notes 2

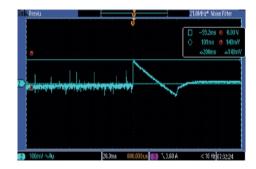
EMC Specifications					
Parameter		Standa	ards & Level		Performance
EMI	Conduction	EN 55011, EN550	EN 55011, EN55032, EN 61000-6-4,		Olara D
Eivii	Radiation	EN 61	1000-6-3	Without external components	Class B
	EN 60601-1-2 4th, EN 55035	i, EN 61000-6-2, EN 6	1000-6-1		
	ESD	EN	61000-4-2 Air ± 15kV	, Contact ± 8kV	Α
	Radiated immunity	EN 61000-4-3 10V/m			Α
	Fast transient	EN 61000-4-4 ±2kV			Α
	Surge		EN 61000-4-5	±1kV	Α
EMS	Conducted immunity		EN 61000-4-6 1	0Vrms	Α
	PFMF	EN 61000-4-8 30A/m			Α
	Dips & Interruptions	EN 61000-4-11 0% of 230VAC 0.5 cycle		Α	
			0% of 230VAC	1 cycle	Α
			70% of 230VAC	25/30 cycle	Α
			0% of 230VAC	250/300 cycle	В

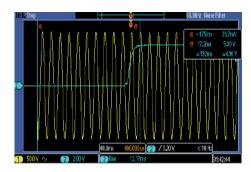

Environmental Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Operating Ambient Temperature Range		-40		+80	°C
Power Derating	Above +60°C		1.5		W/°C
Storage Temperature Range		-40		+95	°C
The area of Charteless and	Shutdown, Internal IC Junction Temperature		142		°C
Thermal Shutdown	Automatic Recovery, Internal IC Junction Temperature		67		°C
Humidity (non condensing)				95	% rel. H
Lead Temperature				200	00
(1.5mm from case for 10Sec.)				260	.€


Notes

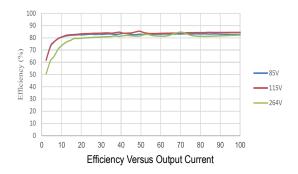

- 1 This product is not designed for use in critical life support systems, equipment used in hazardous environment, nuclear control systems or other such applications which necessitate specific safety and regulatory standards other the ones listed in this datasheet.
- 2 Specifications typical at Ta=+25°C, resistive load, 115VAC, 60Hz input voltage, after warm-up time rated output current unless otherwise noted.
- 3 Ripple & Noise measured with a $0.1 \mu F/50V$ MLCC and a $1 \mu F/50V$ Aluminum electrolytic.
- 4 Safety approvals cover frequency 47-63 Hz.
- 5 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 6 Other input and output voltage may be available, please contact MINMAX.
- 7 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

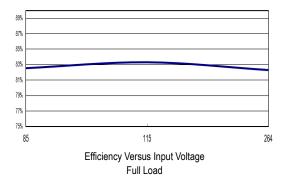
Date: 2024-12-23 Rev: 5 APM-40 Series – EC Notes 3

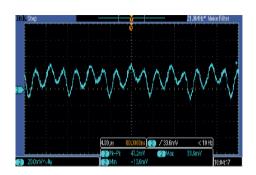




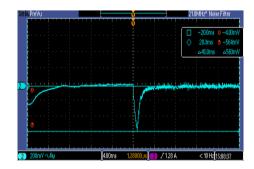
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

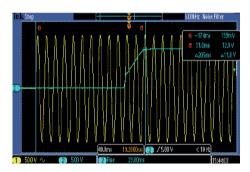



Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

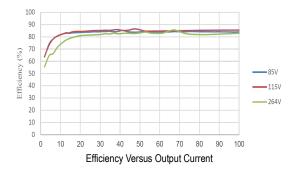


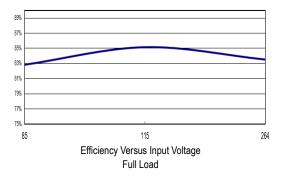
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

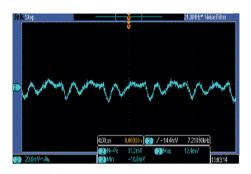




Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$




Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

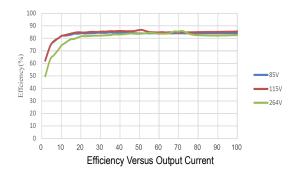


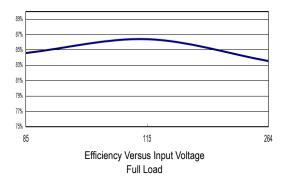
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

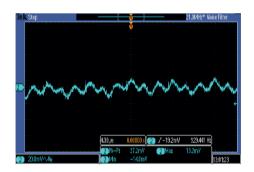




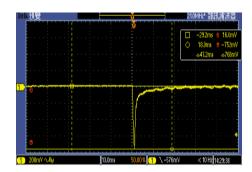
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

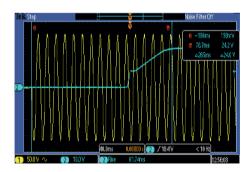



Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

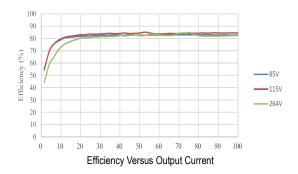


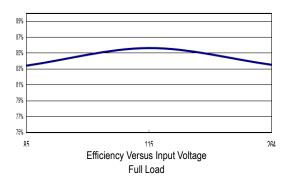
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

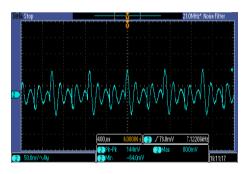


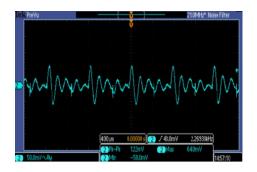


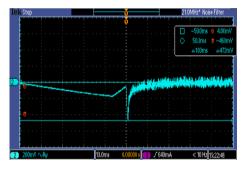
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

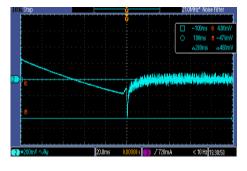

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

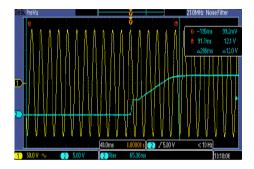



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


All test conditions are at 25°C $\,$ The figures are identical for APM-40D12 $\,$



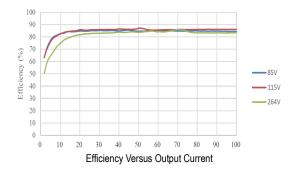

Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (+Vout)

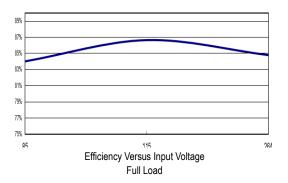

Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (-Vout)

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}$ (+Vout)

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; V_{in}=V_{in nom} (-Vout)

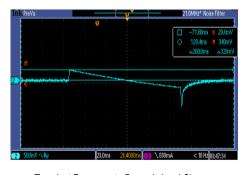
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load (+Vout)}$

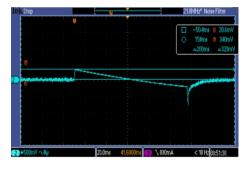

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load (-Vout)

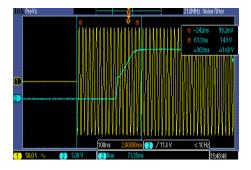

Date:2024-12-23 Rev:5

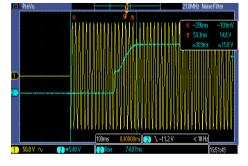

APM-40 Series - EC Notes 8

All test conditions are at 25°C The figures are identical for APM-40D15



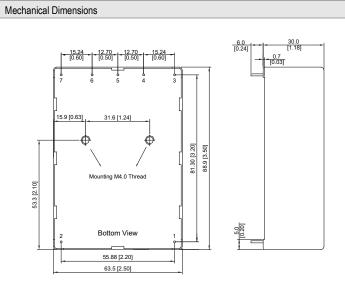

Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (+Vout)


Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (-Vout)


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}} \! = \! V_{\text{in} \, \text{nom}}$ (+Vout)

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; $V_{in}=V_{in nom}$ (-Vout)

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load (+Vout)}$



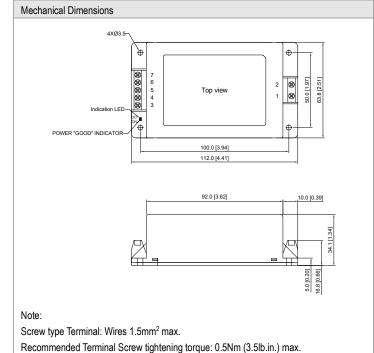
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load (-Vout)

Date:2024-12-23 Rev:5

Package Specifications PCB Mounting

Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)			
1	AC (N)	AC (N)	Ø 1.0 [0.04]			
2	AC (L)	AC (L)	Ø 1.0 [0.04]			
3	+Vout	+Vout	Ø 1.0 [0.04]			
4	No Pin	No Pin	Ø 1.0 [0.04]			
5	-Vout	Common	Ø 1.0 [0.04]			
6	No Pin	No Pin	Ø 1.0 [0.04]			
7	NC	-Vout	Ø 1.0 [0.04]			

NC: No Connection


- ► All dimensions in mm (inches)
- ➤ Tolerance: ±0.5 (±0.02)
- ► Pin pitch tolerance: ±0.25 (±0.01)
- ► Pin diameter tolerance: X.X±0.1 (X.XX±0.004)

Physical Characteristics

Case Size : 88.9x63.5x30.0mm (3.50x2.50x1.18 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)
Pin Material : Copper Alloy

Weight : 310g

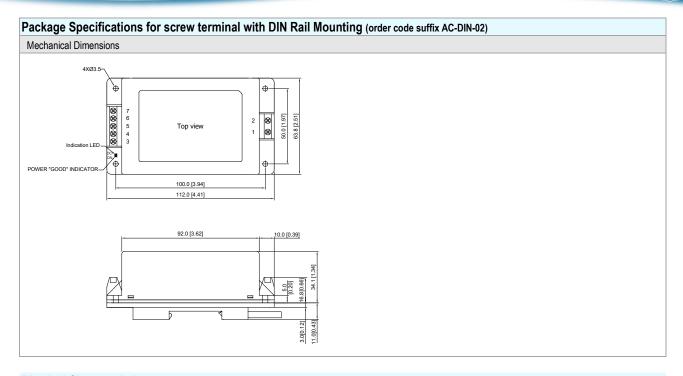
Package Specifications Chassis Mounting with screw terminal (order code suffix C)

Connec	tions	
Pin	Single Output	Dual Output
1	AC (N)	AC (N)
2	AC (L)	AC (L)
3	+Vout	+Vout
4	NC	NC
5	-Vout	Common
6	NC	NC
7	NC	-Vout

NC: No Connection

- ► All dimensions in mm (inches)
- ➤ Tolerance: ±0.5 (±0.02)

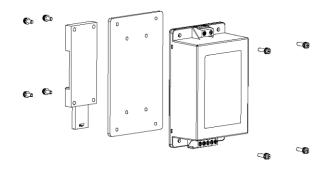
Physical Characteristics

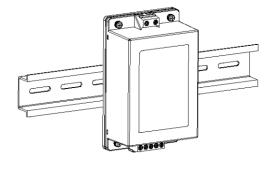

 Case Size
 : 112.0x63.8x34.1mm (4.41x2.51x1.34 inches)

 Case Material
 : Plastic resin (flammability to UL 94V-0 rated)

 Weight
 : 320g

Date:2024-12-23 Rev:5

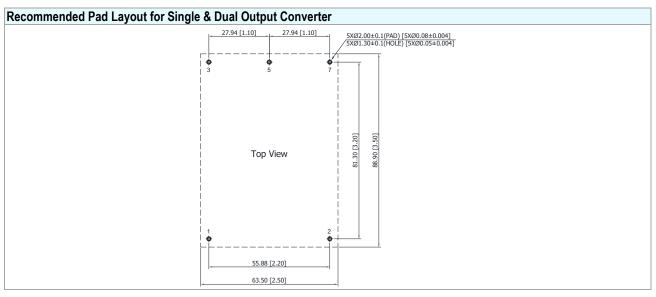

Physical Characteristics

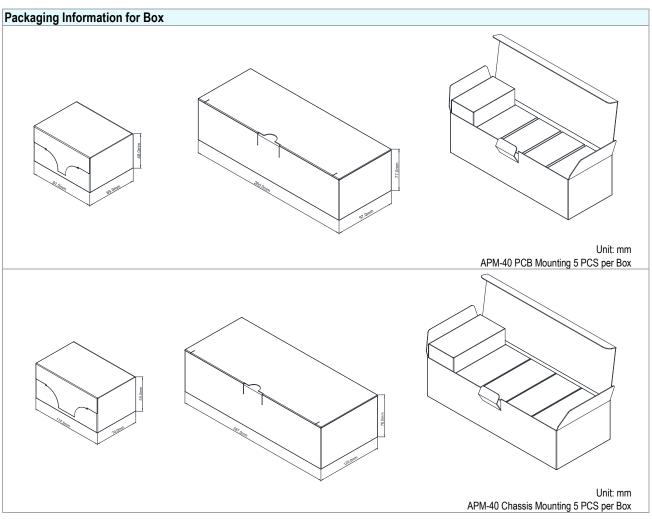

Case Size : 112.0x63.8x34.1mm (4.41x2.51x1.34 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 374g

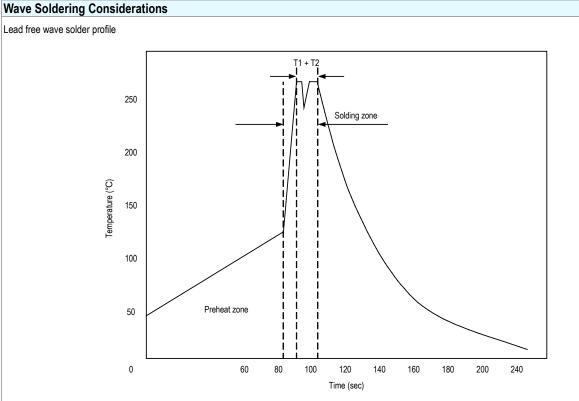
Screw terminal with DIN Rail Mounting




Note:

Recommended tightening torque: 0.35Nm (3.1lb.in.) max.

Date: 2024-12-23 Rev: 5 APM-40 Series – EC Notes 11



Date:2024-12-23 Rev:5 APM-40 Series – EC Notes 12

Zone	Reference Parameter	
Preheat	Rise temp. speed : 3°C/sec max.	
zone	Preheat temp.: 100~130°C	
Actual	Peak temp. : 250~260°C	
heating	Peak time(T1+T2): 4~6 sec	

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Date:2024-12-23 Rev:5 APM-40 Series – EC Notes 13

Part Number Structure S C APM 40 05 Output Power **Output Quantity** Package Type **Output Voltage** 40 Watt **VDC** N/A: **PCB Mounting** S: Single 05: 5 D: Dual 12: 12 VDC C: **Chassis Mounting with screw terminal** 15: 15 VDC 24: 24 VDC

MTBF and Reliability

The MTBF of APM-40 series of AC-DC Power Module has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
APM-40S05		
APM-40S12	200,000	
APM-40S15		Hours
APM-40S24		Hours
APM-40D12		
APM-40D15		

Date:2024-12-23 Rev:5