DC-DC CONVERTER 1W, SIP Package

FEATURES

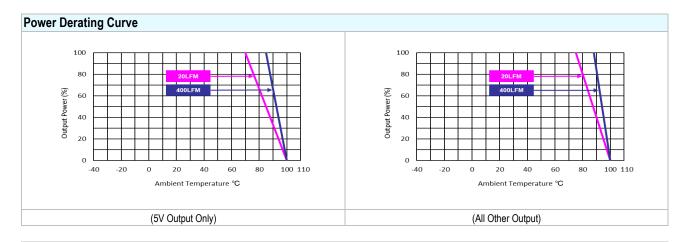
- ► Industrial Standard SIP-4 Package
- ► Unregulated Output Voltage
- ► I/O Isolation 1000 VDC
- ▶ Operating Ambient Temp. Range -40°C to +85°C

PRODUCT OVERVIEW

The MINMAX MBU100 series is a range of 1W DC-DC converters in a miniature SIP Package featuring I/O isolation of 1000VDC. A high efficiency allows an operating temperature range of -40°C to +85°C. These converters offer an economical solution for many space critical applications where a voltage has to be isolated i.e for noise reduction, ground loop elimination, digital interfaces or for board level power distribution.

odel Select	tion Guide									
Model Number	Input Voltage	Output Voltage	Output Current	Input Current		Load Regulation	Max. capacitive	Efficiency (typ.)		
	(Range)		Max.	@Max. Load	@No Load			@Max. Load		
	VDC	VDC	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%		
MBU135	3.3	3.3	260	351	35	14	22	74		
MBU131	(2.97 ~ 3.63)	5	200	394	35	14	33	77		
MBU105		3.3	260	238		11	33			72
MBU101	_	5	200	290	30	11		69		
MBU102	5 (45.55)	9	110	260		8		76		
MBU103	(4.5 ~ 5.5)	12	84	262		7		77		
MBU104		15	67	258		6		78		
MBU111		5	200	117		9		71		
MBU112	12	9	110	107	13	5	22	77		
MBU113	(10.8 ~ 13.2)	12	84	106	13	5	33	79		
MBU114		15	67	105		4		80		
MBU121		5	200	60		8		70		
MBU122	24	9	110	54	7	5	22	76		
MBU123	(21.6 ~ 26.4)	12	84	53	7	4	33	79		
MBU124	1	15	67	53	1	4	1	79		

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	3.3V Input Models	2.97	3.3	3.63	
Innut Voltage Dange	5V Input Models	4.5	5	5.5	
Input Voltage Range	12V Input Models	10.8	12	13.2	\/DC
	24V Input Models	21.6	24	26.4	
	3.3V Input Models	-0.7		6	VDC
Innut Come Vallage (4 and man)	5V Input Models	-0.7		9	
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models	s -0.7		30	
Input Filter	All Models		Internal Capacitor		



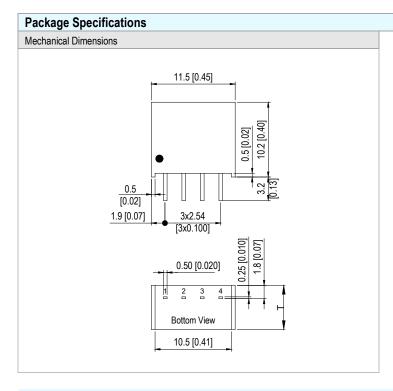
DC-DC CONVERTER 1W, SIP Package

Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy			±1.0	±3.0	%Vnom.	
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%	
			See Model Se	election Guide)	
Load Regulation	lo=20% to 100%	(Operati	on at lower loa	ad will not dar	mage the	
		converter,	but it may no	t meet all spe	cifications)	
Ripple & Noise	0-20 MHz Bandwidth		100	150	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection	0.5 Second Max., Auto	matic Recover	у			

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O lealation Valtage	60 Seconds	1000			VDC
I/O Isolation Voltage	1 Seconds	1200			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		60	100	pF
Switching Frequency		50	90	110	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign 2,000,000			Hours	

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 1W, SIP Package

Pin Connections					
Pin	Function				
1	-Vin				
2	+Vin				
3	-Vout				
4	+Vout				

T: 6.1mm(0.24 inch) for 3.3V&5V&12V Input Models

T: 7.1mm(0.28 inch) for 24V Input Models

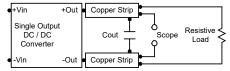
► All dimensions in mm (inches)

► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

► Pins ±0.05(±0.002)

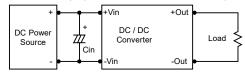
Physical Characteristic	cs
-------------------------	----


Case Size(3.3V, 5V, 12V Input)	:	11.5x6.1x10.2mm (0.45x0.24x0.40 inches)
Case Size(24V Input)	:	11.5x7.1x10.2mm (0.45x0.28x0.40 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Pin Material	:	Alloy 42
Weight(3.3V, 5V, 12V Input)	:	1.3g
Weight(24V Input)	:	1.7g
	•	5

Test Setup

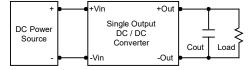
Peak-to-Peak Output Noise Measurement Test

Use a Cout $0.33\mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

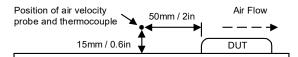

Technical Notes

Maximum Capacitive Load

The MBU100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 33µF maximum capacitive load for devices. The maximum capacitance can be found in the data sheet.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is comended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $2.2\mu\text{F}$ for the 3.3V, 5V input devices, a $1.0\mu\text{F}$ for the 12V input devices and a $0.47\mu\text{F}$ for the 24V devices.


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

