

FEATURES

- ► Industrial Standard DIP-16 Package
- ► Unregulated Output Voltage
- Ultra-high I/O Isolation 8000VDC with Reinforced Insulation, rate for 300Vrms Working Voltage
- ▶ Operating Ambient Temp. Range -25°C to +80°C
- ► Conducted EMI EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval

PRODUCT OVERVIEW

The MINMAX MDEU02-HI series is a range of isolated 2W DC-DC converter modules in DIP-16 package which feature a Ultra-high I/O isolation voltage rated for 8000VDC with reinforced insulation, using for electricity and energy applications. Further feature include EN 55032 class A compliant as well. There are 15 Models available for 5, 12, and 24VDC input. These converters offer a cost-effective solution for wind turbine, solar panel, transporation systems, industrial control equipments where a very high I/O isolation is required.

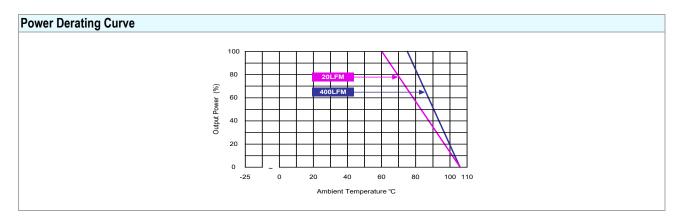
Model Selection	Guide									
Model	Input	Output	Output Input		Load	Max. Capacitive	Efficiency			
Number	Voltage	Voltage	Curi	rent	Current		Regulation	Load	(typ.)	
	(Range)		Max.	Min.	@Max. Load	@No Load			@Max. Load	
	VDC	VDC	mA	mA	mA (typ.)	mA (typ.)	% (max.)	μF	%	
MDEU02-05S05HI		5	400	8	615		12		65	
MDEU02-05S12HI	_ [12	165	3	609		10	330	65	
MDEU02-05S15HI	5 (4.5 ~ 5.5)	15	133	2.5	605	60	10		66	
MDEU02-05D12HI	(4.5 ~ 5.5)	±12	±83	±1.5	553		10	100#	72	
MDEU02-05D15HI		±15	±66	±1	542		10		73	
MDEU02-12S05HI		5	400	8	256		12		65	
MDEU02-12S12HI	40	12	165	3	254		10	330	65	
MDEU02-12S15HI	12	15	133	2.5	252	30	10		66	
MDEU02-12D12HI	(10.8 ~ 13.2)	±12	±83	±1.5	224			10	400#	74
MDEU02-12D15HI		±15	±66	±1	220		10	100#	75	
MDEU02-24S05HI		5	400	8	128		12		65	
MDEU02-24S12HI	[12	165	3	127		10	330	65	
MDEU02-24S15HI	24	15	133	2.5	126	15	10		66	
MDEU02-24D12HI	(21.6 ~ 26.4)	±12	±83	±1.5	112			10	400#	74
MDEU02-24D15HI		±15	±66	±1	110		10	100#	75	

^{*} Min. Output Current for Lower Load Regulation

For each output

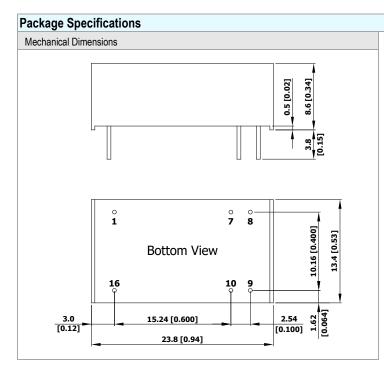
Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
	5V Input Models	4.5	5	5.5		
Input Voltage Range	12V Input Models	10.8	12	13.2		
	24V Input Models	21.6	24	26.4	VDC	
	5V Input Models	-0.7		9	VDC	
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18		
	24V Input Models	-0.7		30		
Input Filter	All Models	Internal Capacitor				

E-mail:sales@minmax.com.tw Tel:886-6-2923150


Output Specifications						
Parameter Conditions		Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy			±2.0	±4.0	%Vnom.	
Output Voltage Balance Dual Output, Balanced Loads			±0.1	±1.0	%	
Line Regulation For Vin Change of 1%			±1.2	±1.5	%	
Load Regulation lo=20% to 100%		See Model Selection Guide				
Ripple & Noise 0-20MHz Bandwidth				150	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection 0.5 Second Max., Automatic Recovery						

Isolation, Safety Standards							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage	60 Seconds Reinforced insulation, rated for 300Vrms working voltage	4000			VAC		
	Tested for 1 second	8000			VDC		
I/O Isolation Resistance	500 VDC	10			GΩ		
I/O Isolation Capacitance	100kHz, 1V		15	20	pF		
Cafab. Ammaniala	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report)						
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)						

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Switching Frequency		50	80	100	kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000			Hours	


EMC Specifications						
Parameter		Standards & Level Pe				
TMI.	Conduction	ENEE030	With external components	Class A		
EMI ₍₅₎	Radiation	EN55032		Class A		
	EN55024					
	ESD	EN61000-4-2 air \pm 8kV , Contact \pm 6kV				
	Radiated immunity	EN61000-4-3 10V/m				
EMS ₍₅₎	Fast transient	EN61000-4-4 ±2kV		Α		
	Surge	EN61000-4-5 ±1kV				
	Conducted immunity	EN61000	-4-6 10Vrms	Α		
	PFMF	EN6100	0-4-8 3A/m	А		

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-25	+80	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)			
1	-Vin	-Vin	Ø 0.5 [0.02]			
7	NC	NC	Ø 0.5 [0.02]			
8	NC	Common	Ø 0.5 [0.02]			
9	+Vout	+Vout	Ø 0.5 [0.02]			
10	-Vout	-Vout	Ø 0.5 [0.02]			
16	+Vin	+Vin	Ø 0.5 [0.02]			

NC: No Connection

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

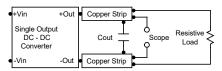
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

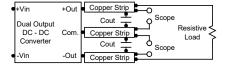
Physical Characteristics

 Case Size
 : 23.8x13.4x8.6mm (0.94x0.53x0.34 inches)

 Case Material
 : Plastic resin (flammability to UL 94V-0 rated)

 Pin Material
 : Phosphor Bronze

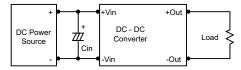

 Weight
 : 5.1g


E-mail:sales@minmax.com.tw Tel:886-6-2923150

Test Setup

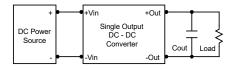
Peak-to-Peak Output Noise Measurement Test

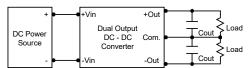
Use a Cout $0.47 \mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

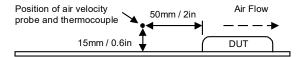
Maximum Capacitive Load

The MDEU02-HI series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend $100\mu F$ maximum capacitive load for dual outputs and $330\mu F$ capacitive load for single outputs. The maximum capacitance can be found in the data sheet.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $2.2\mu\text{F}$ for the 5V input devices, a $1.0\mu\text{F}$ for the 12V input devices and a $0.47\mu\text{F}$ for the 24V input devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $3.3\mu\text{F}$ capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

