

FEATURES

- ► Smallest Encapsulated 6W Converter
- Industrial Standard DIP-16 Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Temp. Range -40°C to +90°C
- ► Low No Load Power Consumption
- ► No Min. Load Requirement
- ► Under-voltage, Overload and Short Circuit Protection
- ► Shielded Metal Case with Insulated Baseplate
- ► Conducted EMI EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

As the smallest encapsulated 6 Watt industrial DC DC converter, MDWI06 series features low no load power consumption, fully regulated output voltage, and a shielded metal case with an insulated baseplate, able to provide up to 87% efficiency and instantaneous load capacity. In recent years, MDWI06 series 6 Watt DC-DC power converters are widely used in motion controllers, charging piles, and other industrial-grade applications.

The MDWI06 series offers 7 output voltage options, including 3.3V, 5V, 12V, 15V, 24V, ±12V, and ±15V, providing a total of 14 selectable models. With a wide 4:1 input voltage range, it enhances versatility for various application scenarios. The MDWI06 features advanced circuit topology, regardless of changes in internal or external conditions, it maintains high stability in overall efficiency, power loss, and heat generation. The series supports a working temperature range from -40°C to +90°C.

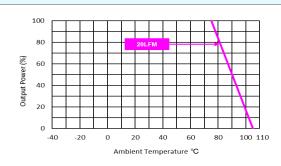
For a more relieving experience, MINMAX DC DC converter manufacturer puts various safety guard functions for MDWI06 series such as under-voltage, overload, and short circuit protection. When it comes to certifications, it also has UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE marking so that you can rely on MINMAX products!

Model Selection	Guide						
Model Number	Input Voltage	Output Voltage	Output Current Max.	Input Current		Max. capacitive Load	Efficiency (typ.)
	(Range)			@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MDWI06-24S033		3.3	1500	264		680	78
MDWI06-24S05	24 (9 ~ 36)	5	1200	305	8	680	82
MDWI06-24S12		12	500	291		330	86
MDWI06-24S15		15	400	291		330	86
MDWI06-24S24		24	250	287		150	87
MDWI06-24D12		±12	±250	291		150#	86
MDWI06-24D15		±15	±200	287		150#	87
MDWI06-48S033		3.3	1500	132		680	78
MDWI06-48S05		5	1200	152		680	82
MDWI06-48S12		12	500	145		330	86
MDWI06-48S15	48 (18 ~ 75)	15	400	145	6	330	86
MDWI06-48S24		24	250	144		150	87
MDWI06-48D12		±12	±250	144		150#	87
MDWI06-48D15		±15	±200	144	1	150#	87

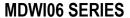
For each output

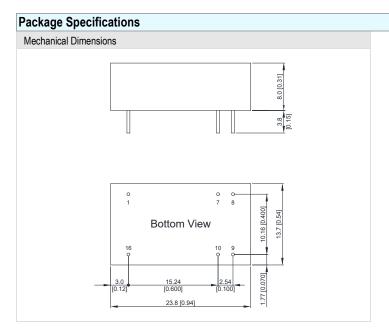
Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
Innut Curso Voltage (1 and may)	24V Input Models	-0.7		50		
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100		
Chart Un Threahald Valtaria	24V Input Models			9	VDC	
Start-Up Threshold Voltage	48V Input Models			18	VDC	
Lladas Valtana Chutdaus	24V Input Models		8			
Under Voltage Shutdown	48V Input Models		16			
Input Filter	All Models	Internal Pi Type				

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.2	±0.8	%
Load Regulation	Io=0% to 100%		±0.5	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20 MHz Bandwidth			55	mV _{P-P}
Transient Recovery Time	OFFI/ Land Chan Channe			500	μsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Hiccup		150		%
Short Circuit Protection	Hiccup Mode 0.5 Hz typ., Automatic Recovery				


General Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
UO la alatia a Valta a	60 Seconds	1500			VDC		
I/O Isolation Voltage	1 Second	1800			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V		500		pF		
Switching Frequency			370		kHz		
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,951,470			Hours		
O-fate Assessed	UL/cUL 60950-1 recognition(L	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)						

EMC Specifications							
Parameter		Standards & Level Perform					
EMI	Conduction	EN 55032	Without external components	Class A			
EMI ₍₅₎	Radiation	EIN 00002	With external components				
	EN 55035						
	ESD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV					
	Radiated immunity	EN 61000-4-3 20V/m					
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		Α			
	Surge	EN 61000-4-5 ±1kV					
	Conducted immunity	EN 61000-4-6 10Vrms					
	PFMF	EN 61000-4-8 100A/m, 1000A/m(1sec.)		Α			


Environmental Specifications						
Parameter	Min.	Max.	Unit			
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+90	°C			
Case Temperature		+105	°C			
Storage Temperature Range	-50	+125	°C			
Humidity (non condensing)		95	% rel. H			
Lead Temperature (1.5mm from case for 10Sec.)		260	°C			



Notes

- Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)			
1	-Vin	-Vin	Ø 0.5 [0.02]			
7	NC	NC	Ø 0.5 [0.02]			
8	NC	Common	Ø 0.5 [0.02]			
9	+Vout	+Vout	Ø 0.5 [0.02]			
10	-Vout	-Vout	Ø 0.5 [0.02]			
16	+Vin	+Vin	Ø 0.5 [0.02]			

NC: No Connection

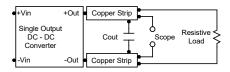
- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

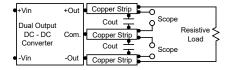
X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)
Case Material : Metal With Non-Conductive Baseplate

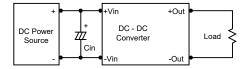

Pin Material : Copper Alloy
Weight : 6.1g



Test Setup

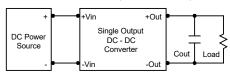
Peak-to-Peak Output Noise Measurement Test

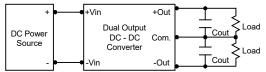
Use a Cout $0.47 \mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

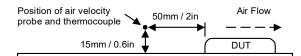
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $2.2\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



Maximum Capacitive Load

The MDWI06 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

