

DC-DC CONVERTER 2W, SIP-Package

FEATURES

- High Power Density in SIP-9 Package
- Small Footprint: 26 x 9.2 mm (1.02"x 0.36")
- Ultra-wide 4:1 Input Range
- Fully Regulated Output
- Operating Temp. Range -40°C to +85°C
- Under-Voltage, Overload and Short Circuit Protection
- ► I/O-Isolation Voltage 1500 VDC
- Remote On/Off Control
- UL/cUL/IEC/EN 62368-1 Safety Approval

PRODUCT OVERVIEW

The MINMAX MEW1000 series is a range of isolated 2W DC-DC converter modules featuring fully regulated output and ultra-wide 4:1 input voltage ranges. The product comes in a SIP-9 package with a very small footprint occupying only 2.4 cm² (0.36 square in.) on the PCB.

An excellent efficiency allows an operating temperature range of -40°C to +85°C. Further features include remote On/Off control, under-voltage, overload and short circuit protection.

The very compact dimensions of these DC-DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Model Selection Guide

Model Input		Output	Output Output Current		Input Current		Reflected	Max. capacitive	Efficiency
Number	Voltage	Voltage					Ripple	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MEW1021	24 (9 ~ 36)	3.3	500	125	97	-		2200	71
MEW1022		5	400	100	110		1000	76	
MEW1023		12	167	42	106		170	79	
MEW1024		15	134	33	105	20	300	110	80
MEW1025		±5	±200	±50	114			470#	73
MEW1026		±12	±83	±21	108			100#	77
MEW1027		±15	±67	±17	106			47#	79
MEW1031		3.3	500	125	49			2200	70
MEW1032		5	400	100	58			1000	72
MEW1033	40	12	167	42	54			170	78
MEW1034	48	15	134	33	54	15	600	110	78
MEW1035	(18 ~ 75)	±5	±200	±50	60			470#	70
MEW1036		±12	±83	±21	55			100#	76
MEW1037		±15	±67	±17	55			47#	76

For each output

Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit
	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
Start-Up Threshold Voltage	24V Input Models	4.5	6	8.5	VDC
	48V Input Models	8.5	12	17	VDC
	24V Input Models			8	
Under Voltage Shutdown	48V Input Models			16	
Short Circuit Input Power				1500	mW
Internal Filter Type	All Models	Capacitor type		itor type	
Internal Power Dissipation	ernal Power Dissipation			2500	mW

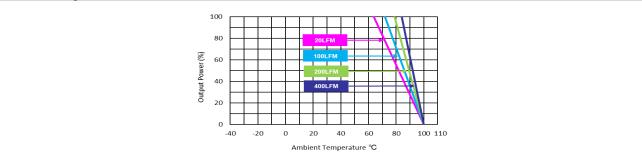
DC-DC CONVERTER 2W, SIP-Package

Output Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.3	±0.5	%
Load Regulation	lo=25% to 100%		±0.5	±0.75	%
Ripple & Noise	0-20MHz Bandwidth		30	50	mV _{P-P}
Transient Recovery Time	25% Lood Stop Change		100	300	µsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection	Continuous, Automatic Recovery				

General Specifications

Deremeter	Conditions	Min	Turn	Max	Linit	
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage	60 Seconds	1500			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		250	500	pF	
Switching Frequency			300		kHz	
MTBF (Calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours	
Cofety Approvala	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

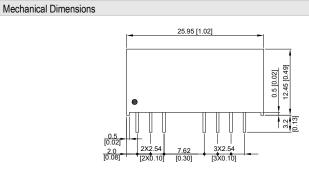

Remote On/Off Control

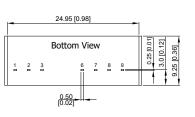
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	Under 0.6 VDC or Open	Circuit, drops do	wn to 0VDC by 2	2mV/°C			
Converter Off		2.9 to 15 VDC					
Standby Input Current			1	3	mA		
Control Input Current (on)	Vin = 0V			-1	mA		
Control Input Current (off)	Vin = 5.0V			1	mA		
Control Common	Referenced to Negative Input						

Environmental Specifications

Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C		
Case Temperature		+90	°C		
Storage Temperature Range	-55	+105	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Power Derating Curve




DC-DC CONVERTER 2W, SIP-Package

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

Package Specifications

Pin Conne	ctions	
Pin	Single Output	Dual Output
1	-Vin	-Vin
2	+Vin	+Vin
3	Remote On/Off	Remote On/Off
6	+Vout	+Vout
7	NC	Common
8	NC	NC
9	-Vout	-Vout

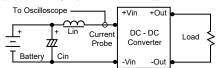
NC: No Connection

All dimensions in mm (inches)

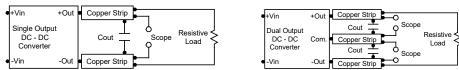
► Tolerance: X.X±0.5 (X.XX±0.02)

- X.XX±0.25 (X.XXX±0.01)
- Pins ±0.1(±0.004)

Physical Characteristics


Case Size	25.95x9.25x12.45 mm (1.02x0.36x0.49 inches)	
Case Material	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)	
Pin Material	Alloy 42	
Weight	6.5g	

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

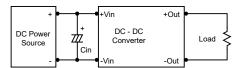
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic high is 2.9V to 15V. A logic low is under 0.6 VDC or open circuit, drops down to 0VDC by 2mV/°C. The maximum sink current at on/off terminal during a logic low is 1 mA. The maximum allowable leakage current of the switch at on/off terminal =(under 0.6VDC or open circuit) is 1mA.

Maximum Capacitive Load

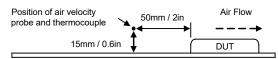

The MEW1000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0 Ω at 100 kHz) capacitor of a 1.5 μ F for the 24V and 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

