DC-DC CONVERTER 3W, Railway Certified

FEATURES

- ► Industrial Standard DIP-24 Package
- ► Ultra-wide Input Ranges 9-36VDC, 18-75VDC, 40-160VDC
- ► I/O Isolation 3000VAC with Reinforced Insulation
- ➤ Operating Ambient Temp. Range -40°C to +92°C
- No Min. Load Requirement
- ► Under-Voltage, Overload and Short Circuit Protection
- ► EMI Emission EN 55032/11 Class A Approved
- ➤ Vibration and Shock/Bump Test EN 61373 Approved
- ➤ Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- ► Railway EMC Standard EN 50121-3-2 Approved
- ► Railway Certified EN 50155 (IEC60571) Approved
- ► Fire Protection Test EN 45545-2 Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MIZI03 series is a new range of railway approved 3W isolated DC-DC converter within encapsulated DIP-24 package which specifically design for railway applications. There are 15 models available for the railway system of multi-input voltage range by 24(9~36)VDC × 48(18~75)VDC × 72/110(40~160)VDC and fixed output voltage regulation.

Further features include high I/O isolation rated for 3000VAC with reinforced insulation, overload, under-voltage, short circuit protection and EMI emission EN55032 Class A approved as well. MIZI03 series conform to vibration and shock/bump test EN 61373, cooling, dry and damp heat test IEC/EN 60068-2-1,2,30 and railway EMC standard EN 50121-3-2 and complies also with Railway Certification EN 50155 (IEC 60571) and EN 45545-2 for fire

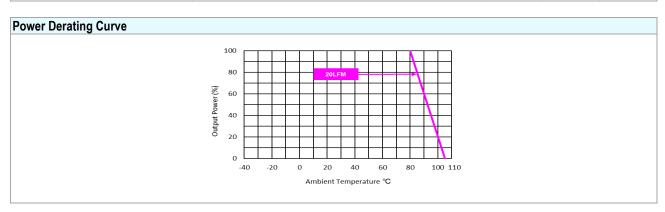
MIZI03 series offer an highly reliable solution for critical applications in railway systems, battery-powered equipment, measure instrumentation and many critical applications.

Model	Input	Output	Output	Inp	out	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MIZI03-24S05		5	600	156		680	80
MIZI03-24S12	0.4	12	250	149	9	330	84
MIZI03-24S15	24	15	200	147		220	85
MIZI03-24D12	(9 ~ 36)	±12	±125	151		220#	83
MIZI03-24D15		±15	±100	149		220#	84
MIZI03-48S05		5	600	78		680	80
MIZI03-48S12	10	12	250	75		330	83
MIZI03-48S15	48	15	200	74	5	220	84
MIZI03-48D12	(18 ~ 75)	±12	±125	75		220#	83
MIZI03-48D15		±15	±100	75		220#	83
MIZI03-110S05		5	600	34		680	80
MIZI03-110S12	440	12	250	32		330	84
MIZI03-110S15	110	15	200	32	3	220	84
MIZI03-110D12	(40 ~ 160)	±12	±125	33		220#	83
MIZI03-110D15		±15	±100	32		220#	85

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
	110V Input Models	-0.7		170	
	24V Input Models			9	
Start-Up Threshold Voltage	48V Input Models			18	VDC
	110V Input Models			40	
	24V Input Models		7.5		
Under Voltage Shutdown	48V Input Models		16		
	110V Input Models		37		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load 60		ms		
Input Filter	All Models		Interna	Pi Type	

Output Specifications							
Parameter	Conditions / Model		Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy					±1.0	%	
Output Voltage Balance		Dual Output, Balanced Loads			±1	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load				±0.5	%	
Load Regulation	Io=0% to 100%				±1.0	%	
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load				±5.0	%	
Minimum Load	No minimum Load		d Requiremen	t			
Disale 9 Naise	0-20 MHz	5Vo	Measured with a		50		mV _{P-P}
Ripple & Noise	Bandwidth	12Vo, 15Vo, ±12Vo, ±15Vo	10μF/25V MLCC		75		mV _{P-P}
Transient Recovery Time	25% Load Step Change ₍₂₎				500	μsec	
Transient Response Deviation				±3	±5	%	
Temperature Coefficient					±0.02	%/°C	
Over Load Protection	Hiccup			150		%	
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.7Hz typ.)						


General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds				VAC
I/O Isolation Resistance	esistance 500 VDC 1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		1500		pF
0 % 11 5	110Vin Models		170		kHz
Switching Frequency	Other Models		285		kHz
MTBF(calculated) MIL-HDBK-217F@25°C, Ground Benign 3,360,000			Hours		
Safety Approval	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report), EN 50155, IEC 60571				
	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)				

EMC Specifications				
Parameter		Standards & Level Performance		
General		Compliance with EN 50121-3-2 Railway Applications		
EMI	Conduction	EN 55032/11	Without external components	Class A
EIVII	Radiation	EN 55032/11		Class A
	EN 55024, EN 55035			
	ESD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV		Α
	Radiated immunity	nunity EN 61000-4-3 10V/m		Α
EMS ₍₄₎	Fast transient	EN 61000-4-4 ±2kV		Α
	Surge	EN 61000-4-5 ±2kV		Α
	Conducted immunity	EN 61000-4-6 10Vrms		Α
	PFMF	EN 61000-4-8 1	00A/m, 1000A/m For 1 Second	А

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 3W, Railway Certified

Environmental Specifications				
Parameter	Conditions	Min.	Max.	Unit
Operating Ambient Temperature Range		-40	+92	°C
(See Power Derating Curve)		-40	+92	C
Case Temperature			+105	°C
Storage Temperature Range		-50	+125	°C
Cooling Test	Compliance to IEC/EN 60068-2-1			
Dry Heat	Compliance to IEC/EN 60068-2-2			
Damp Heat	Compliance to IEC/EN 60068-2-30			
Shock & Vibration Test	Compliance to IEC/EN 61373			
Humidity (non condensing)			95	% rel. H
Lead Temperature			000	90
(1.5mm from case for 10Sec.)			260	°C

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 The external components might be required to meet EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

DC-DC CONVERTER 3W, Railway Certified

Package Specifications Mechanical Dimensions | Lambda |

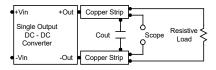
Pin Connections				
Pin	Single Output	Dual Output	Diameter mm (inches)	
1	+Vin	+Vin	Ø 0.6 [0.024]	
11	No Pin	Common	Ø 0.6 [0.024]	
12	-Vout	No Pin	Ø 0.6 [0.024]	
13	+Vout	-Vout	Ø 0.6 [0.024]	
15	No Pin	+Vout	Ø 0.6 [0.024]	
23	-Vin	-Vin	Ø 0.6 [0.024]	
24	-Vin	-Vin	Ø 0.6 [0.024]	

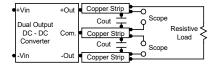
- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

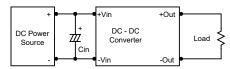

,	
Case Size	: 31.8x20.3x12.0mm (1.25x0.8x0.47 inches)
Case Material	: Plastic resin (flammability to UL 94V-0 rated)
Pin Material	: Copper Alloy
Potting Material	: Silicone (UL94-V0)
Weight	: 15.4g



Test Setup

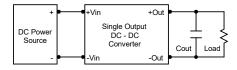
Peak-to-Peak Output Noise Measurement Test

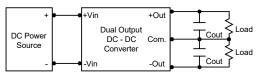
Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

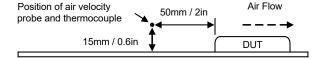
To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of $4.7\mu\text{F}$ for the 24V input devices, a $2.2\mu\text{F}$ for the 48V devices and a $1\mu\text{F}$ for the 110V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



Maximum Capacitive Load

The MIZI03 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

