

MJA06C Series EC Note

DC-DC Power Module 6W

Features

- Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- 80-160VDC Wide Input Voltage Range
- Fully Regulated Output Voltage
- High Efficiency up to 84%
- I/O Isolation 3000VAC with Reinforced Insulation, rated for 1000Vrms Working Voltage
- ▶ Wide Operating Ambient Temp. Range
- No Min. Load Requirement
- Very Low No Load Power Consumption
- Under-voltage, Overload and Short Circuit Protection
- Remote On/Off Control
- EMI Emission EN 55032 Class A Approved (EMI filter build-in)
- EMS Immunity EN 61000-4-2,3,4,5,6,8 Approved (EMS filter build-in)
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MJA06C series is the latest 6Watt isolated DC-DC power module generation with 9 fixed output voltage models: 5/5.1/12/15/24/48/ $\pm 12/\pm 15/\pm 24$ VDC. The wide input range from 80VDC to 160VDC is specifically for electricity and renewable energy field applications within the usage of terminal strip connectors in chassis and DIN-Rail package.

The key performances are: 3000VAC I/O Isolation, reinforced insulation, high efficiency, no min. load, low no-load power consumption, remote on/off, built-in EMI emission EN 55032 Class A, UVLO, and SCP. MJA06C series is designed with a wide operating ambient temperature range to ensure stability across various conditions.

The MJA06C series certificates in safety UL/cUL/IEC/EN 62368-1 with CB report and CE marking and offers a solution for eliminating components of a power board.

Table of contents

Model Selection Guide	P2	Package Specifications	. P13
Input Specifications	P2	Test Setup	. P14
Remote On/Off Control	P2	Technical Notes	. P14
Output Specifications	P2	Remote On/Off Implementation	. P15
General Specifications	P3	Packaging Information	. P15
EMC Specifications	P3	Part Number Structure	. P16
Environmental Specifications	P3	MTBF and Reliability	. P16
Characteristic Curves	.P4		

Date:2025-06-19 Rev:12

Model Selection Guide

	aluo											
Model	Input	Output	Output	Inj	put	Max. capacitive	Efficiency					
Number	Voltage	Voltage	Current	Cur	rrent	Load	(typ.)					
	(Range)		Max.	@Max. Load	@No Load		@Max. Load					
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%					
MJA06-110S05C		5	1200	69		680	79					
MJA06-110S051C		5.1	1200	70		680	79					
MJA06-110S12C		12	500	66	_						330	83
MJA06-110S15C		15	400	66		330	83					
MJA06-110S24C	110	24	250	65	8	150	84					
MJA06-110S48C	(80 ~ 160)	48	125	67		68	82					
MJA06-110D12C		±12	±250	65	-					150#	84	
MJA06-110D15C		±15	±200	65		150#	84					
MJA06-110D24C		±24	±125	66		68#	83					

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (1 sec. max.)		-0.7		170	
Start-Up Threshold Voltage				80	VDC
Under Voltage Shutdown			74		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30	60	ms
Input Filter	All Models		Internal	Рі Туре	

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 12V or C	pen Circuit			
Converter Off	0~1.2V or Short Circuit	t (Pin 1 and Pi	n 2)		
Control Input Current (on)	Vctrl = 5V			500	μA
Control Input Current (off)	Vctrl = 0V			-500	μA
Control Common	Referenced to Ne	egative Input			
Standby Input Current	Nominal Vin		2.5		mA

Output Specifications

Parameter	(Conditions / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±2.0	%Vnom.
Output Voltage Balance	Dual C	Dutput, Balanced Loads			±2.0	%
Line Regulation	Vin=N	lin. to Max. @Full Load			±0.5	%
Load Regulation		lo=0% to 100%			±0.5	%
Load Cross Regulation (Dual Output Models)	Asymmetri	cal Load 25/100% Full Load			±5.0	%
Minimum Load		No minimum Load	Requirement			
Diasta 0 Maine		24V & ±24V & 48V Output Models		180		mV _{P-P}
Rippie & Noise	0-20 MHZ Bandwidth	Other Output Models		75		mV _{P-P}
Transient Recovery Time	0.50				500	μS
Transient Response Deviation	- 25%	6 Load Step Change		±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection		Hiccup		150		%
Short Circuit Protection		Continuous, Automatic Recover	y (Hiccup Mod	de 0.2Hz typ.)		

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
1/O loolation Voltage	60 Seconds	2000			VAC
I/O Isolation voltage	Reinforced insulation, rated for 1000Vrms working voltage	3000			VAC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		2200		pF
Switching Frequency			250		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	4,162,759			Hours
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate),	IEC/EN 62368	3-1 & 60950-1	(CB-report)	

EMC Specifications

Parameter		Standards & Level		Performance
EMI	Conduction		Without outomal companyate	
	Radiation	EN 55052	Without external components	Class A
	EN55035			
		Direct discharge	Indirect discharge HCP & VCP	Δ
	ESD	EN61000-4-2 Air ± 8kV	Contact ± 6kV	A
EMS	Radiated immunity	EN6100	0-4-3 10V/m	A
EMS	Fast transient	EN6100	0-4-4 ±2kV	A
	Surge	EN6100	0-4-5 ±2kV	A
	Conducted immunity	EN61000	-4-6 10Vrms	A
	PFMF	EN61000	-4-8 100A/m	A

Environmental Specifications

Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+92.5	°C
Case Temperature		+105	°C
Storage Temperature Range	-50	+125	°C
Humidity (non condensing)		95	% rel. H
Altitude		5000	m
Lead Temperature (1.5mm from case for 10Sec.)		260	°C

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.
- 6 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110S05C $\,$

Date:2025-06-19 Rev:12

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110S051C $\,$

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110S12C $\,$

160

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110S15C $\,$

Date:2025-06-19 Rev:12

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110S24C $\,$

160

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110S48C $\,$

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110D12C $\,$

Vin=Vin nom ; Full Load

Derating Output Power Versus Ambient Temperature $$V_{\text{in}}$=V_{\text{in nom}}$$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

Date:2025-06-19 Rev:12

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110D15C $\,$

80 10 International Contractions of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

Date:2025-06-19 Rev:12

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJA06-110D24C $\,$

Derating Output Power Versus Ambient Temperature $$V_{\text{in}}$=V_{\text{in nom}}$$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

Date:2025-06-19 Rev:12

Weight

49.05g

:

POWER FOR A BETTER FUTURE

Date:2025-06-19 Rev:12

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

●+Vin	+Out	Copper Strip
Dual Output DC - DC Converter	Com.	Cout Copper Strip
-Vin	-Out	Copper Strip

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -500µA.

Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 1µF for the 110V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Maximum Capacitive Load

The MJA06C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Remote On/Off Implementation

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/OFF pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to -Vin. If not using the remote ON/OFF feature, please open circuit between ON/OFF pin and -Vin pin to turn the module on.

Isolated-Closure Remote ON/OFF

Packaging Information

MTBF and Reliability

The MTBF of MJA06C series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Unit	MTBF	Model
	4,178,732	MJA06-110S05C
]	4,162,759	MJA06-110S051C
]	4,321,316	MJA06-110S12C
]	4,280,022	MJA06-110S15C
Hours	4,305,545	MJA06-110S24C
]	4,186,022	MJA06-110S48C
]	4,354,756	MJA06-110D12C
]	4,308,302	MJA06-110D15C
	4,205,959	MJA06-110D24C

Date:2025-06-19 Rev:12