

MJWI06C Series EC Note

DC-DC Power Module 6W

Features

- Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- High Efficiency up to 85%
- I/O Isolation 3000 VDC
- ▶ Wide Operating Ambient Temp. Range
- No Min. Load Requirement
- Under-voltage, Overload and Short Circuit Protection
- Remote On/Off Control
- EMI Emission EN 55032 Class A Approved (EMI filter build-in)
- EMS Immunity EN 61000-4-2,3,4,5,6,8 Approved (EMS filter build-in)
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MJWI06C series is a new range of high performance DC-DC converters featuring a wide 4:1 input range in a chassis-mount package with terminal strip connections and optional DIN-Rail mounting offer system designers the opportunity to eliminate the power board request in the field application. Further features including high efficiency 85%, wide operating temp. range, I/O isolation 3000VDC for 60Sec, no min. load request, built-in EMC filter for EMI emission EN 55032 class A approved and EMS immunity EN 61000-4-2,3,4,5,6,8 approved, and abnormal operation protection with under-voltage, overload and short circuit protections. All family have been qualified per CB scheme with safety approvals to UL/cUL/IEC/EN 62368-1 with 3 years warranty.

Table of contents

Model Selection Guide	P2 Package Specifications	P22
Input Specifications		P22
Remote On/Off Control		P23
Output Specifications		P24
General Specifications		P24
Environmental Specifications		P25
Characteristic Curves	P4	

Date:2025-06-19 Rev:11

Model Selection G	uide						
Model	Input	Output	Output	Ing	put	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MJWI06-24S05C		5	1200	309		680	81
MJWI06-24S051C		5.1	1200	315		680	81
MJWI06-24S12C		12	500	298		330	84
MJWI06-24S15C	04	15	400	298		330	84
MJWI06-24S24C	24	24	250	294	10	150	85
MJWI06-24S48C	(9 ~ 36)	48	125	301		68	83
MJWI06-24D12C		±12	±250	298		150#	84
MJWI06-24D15C		±15	±200	294		150#	85
MJWI06-24D24C		±24	±125	298		68#	84
MJWI06-48S05C		5	1200	156		680	80
MJWI06-48S051C		5.1	1200	159		680	80
MJWI06-48S12C		12	500	149		330	84
MJWI06-48S15C	40	15	400	149		330	84
MJWI06-48S24C	48	24	250	147	8	150	85
MJWI06-48S48C	(18 ~ 75)	48	125	151		68	83
MJWI06-48D12C		±12	±250	147		150#	85
MJWI06-48D15C		±15	±200	147		150#	85
MJWI06-48D24C		±24	±125	149	<u> </u>	68#	84

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Innut Curren Vieltage (1 and may)	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
Ctart I In Thrashold Vallage	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	VDC
Linder Velterer Chutdeure	24V Input Models		8		
Under Voltage Shutdown	48V Input Models		16		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30		ms
Input Filter	All Models		Interna	Рі Туре	

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 12V or Op	en Circuit			
Converter Off	0~1.2V or Short Circuit ((Pin 1 and Pin	2)		
Control Input Current (on)	Vctrl = 5V			500	μA
Control Input Current (off)	Vctrl = 0V			-500	μA
Control Common	Referenced to Neg	gative Input			
Standby Input Current	Nominal Vin		2.5		mA

Output Specifications						
Parameter	Cor	ditions / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±2.0	%Vnom.
Output Voltage Balance	Dual Out	put, Balanced Loads			±2.0	%
Line Regulation	Vin=Min.	to Max. @Full Load			±0.5	%
Load Regulation	lo	=0% to 100%			±0.5	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load				±5.0	%
Minimum Load		No minimum Load F	Requirement			
Divela 0 Nation	0.00 MHz David diffe	24V & ±24V & 48V Output Models		180		mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	Other Output Models		75		mV _{P-P}
Transient Recovery Time	050/ 1	and Ohan Ohanna			500	μs
Transient Response Deviation	20% L	oad Step Change		±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection		Hiccup		150		%
Short Circuit Protection		Continuous, Automatic Recovery	(Hiccup Mode	e 0.3Hz typ.)		

General Specifications

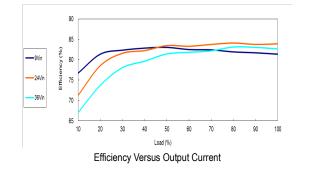
oonoral opeenneatione					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds	3000			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		2200		pF
Switching Frequency			370		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	4,166,765			Hours
Safety Approvals	UL/cUL 62368-1 recognition(UL certificat	e), IEC/EN 62368-	1 & 60950-1(CB report)	

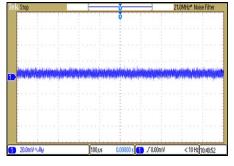
EMC Specifications

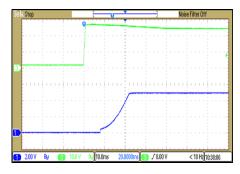
Parameter		Standards & Level				
	Conduction	EN 55032	Without outernal components	Class A		
EMI	Radiation	EN 55052	Without external components	Class A		
	EN55035					
	ESD	Direct discharge	Indirect discharge HCP & VCP	^		
	ESD	EN61000-4-2 Air ± 8kV	Contact ± 6kV	- A		
EMS	Radiated immunity	EN61000-4-3 10V/m				
EMS	Fast transient	EN61000-4-4 ±2kV				
	Surge	EN61000-4-5 ±2kV				
	Conducted immunity	EN61000-4-6 10Vrms				
	PFMF	EN61000-4-8	3 100A/m	A		

Environmental Specifications			
Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+92.5	°C
Case Temperature		+105	°C
Storage Temperature Range	-50	+125	°C
Humidity (non condensing)		95	% rel. H
Lead Temperature (1.5mm from case for 10Sec.)		260	°C

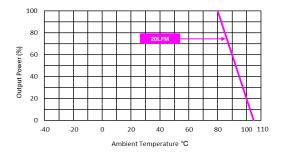
Notes

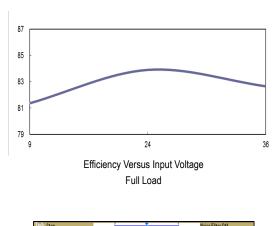

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.

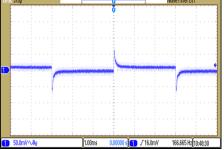

6 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


Characteristic Curves

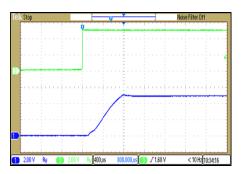
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24S05C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

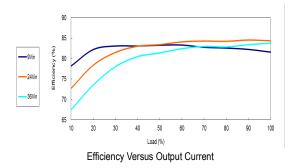


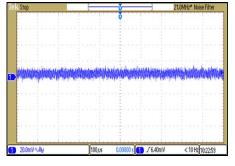
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

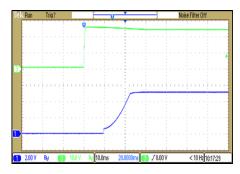


Derating Output Power Versus Ambient Temperature $\label{eq:Vin} V_{\text{in nom}}$

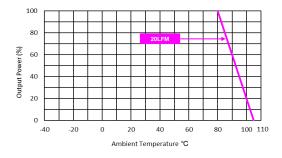
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

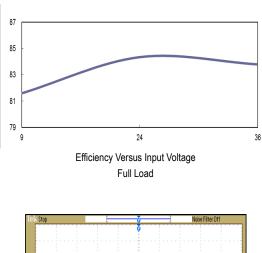

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

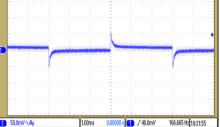

Date:2025-06-19 Rev:11


Characteristic Curves

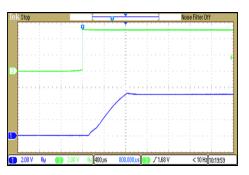
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24S051C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

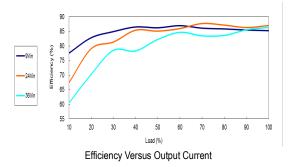


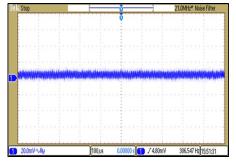
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

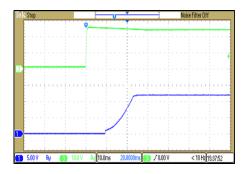


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

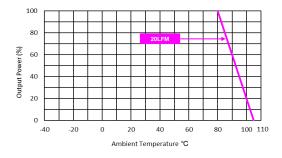
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

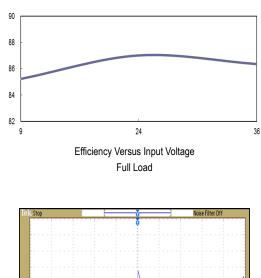


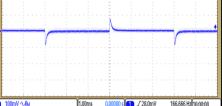

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load


Characteristic Curves

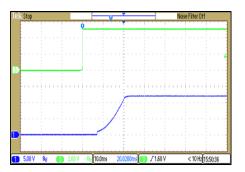
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24S12C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

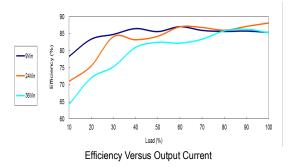


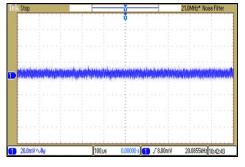
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

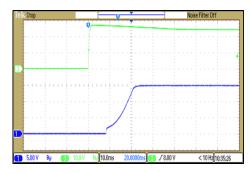


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

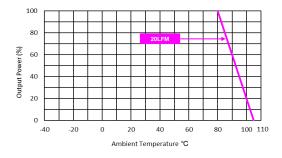
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

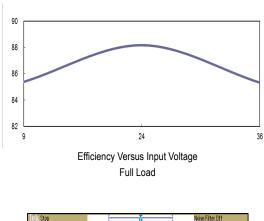


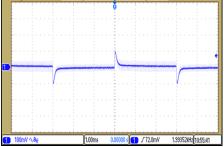

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load


Characteristic Curves

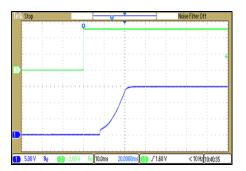
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24S15C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

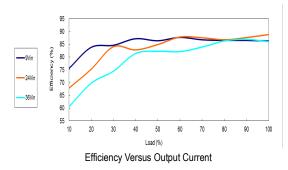


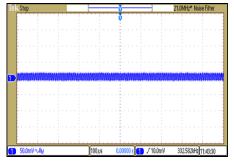
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

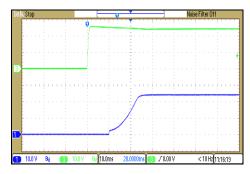


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

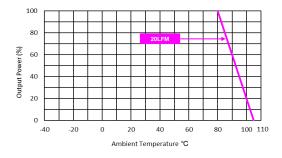
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

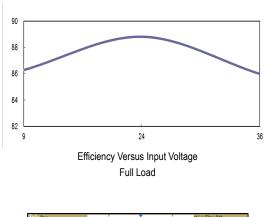


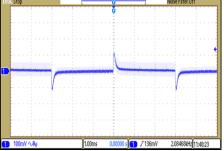

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load


Characteristic Curves

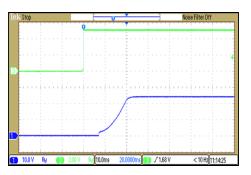
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24S24C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

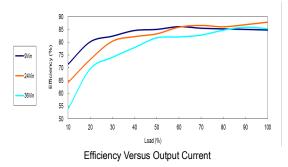


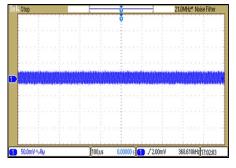
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

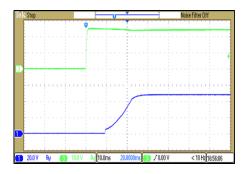


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

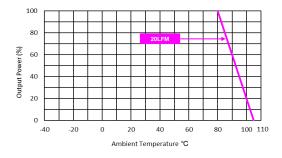
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

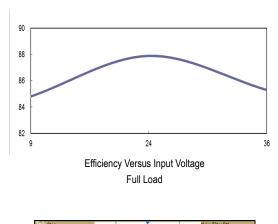


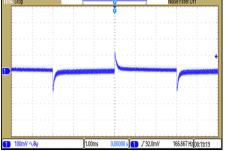

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load


Characteristic Curves

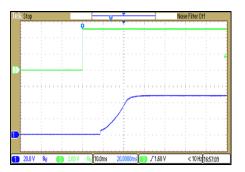
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24S48C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

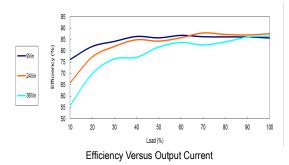


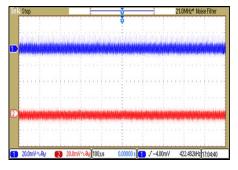
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

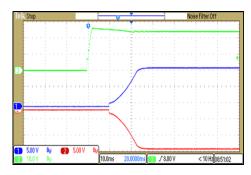


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

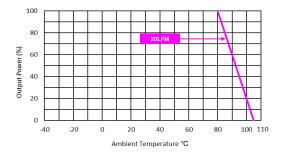
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom



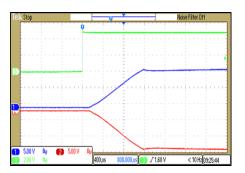

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24D12C $\,$

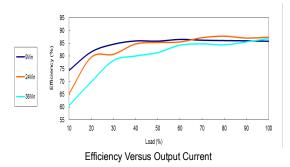


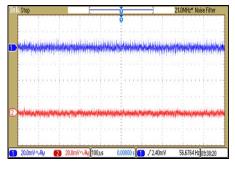

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

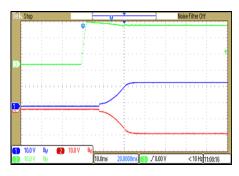

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

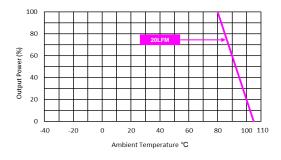
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}{=}V_{\text{in nom}}$

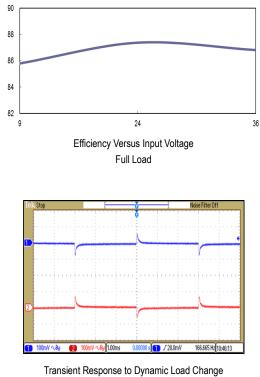


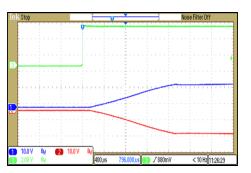

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24D15C $\,$

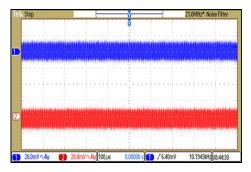


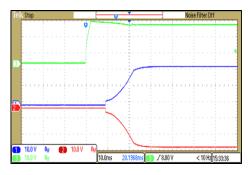

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

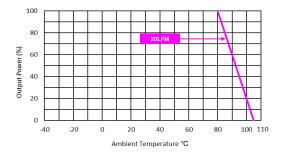
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

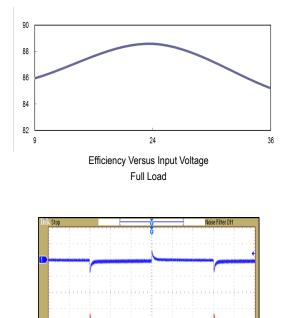
from 100% to 75% of Full Load ; Vin=Vin nom


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

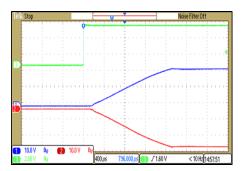

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-24D24C $\,$




Typical Output Ripple and Noise Vin=Vin nom; Full Load

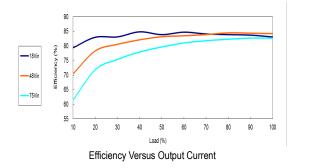
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

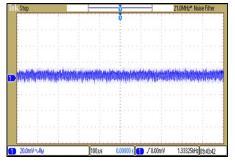


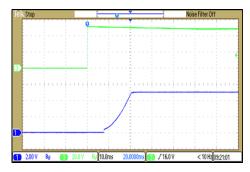
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

00mV ^.Ay 👩 100mV ^.Ay]1.00ms 0.00000 s 😭 / 40.0mV 166.666 Hz]0z.45:36

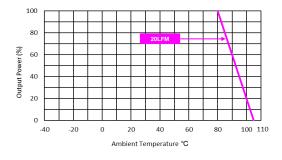
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

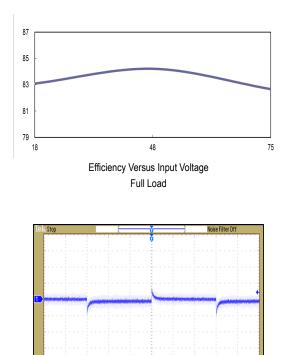



ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

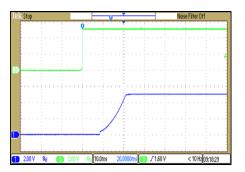

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48S05C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

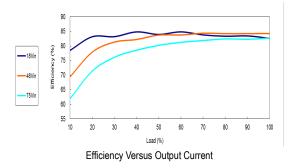
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

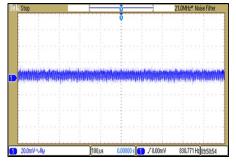

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

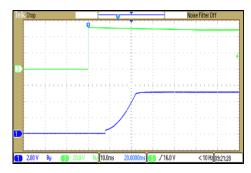
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

/ 22.0mV

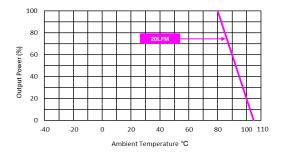
172,950 Hz 13:31:09

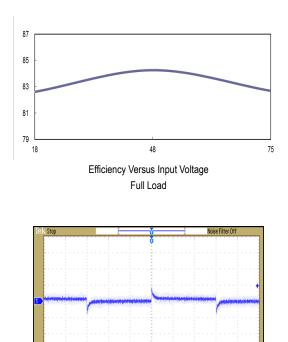



ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

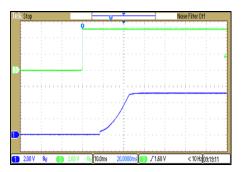

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48S051C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

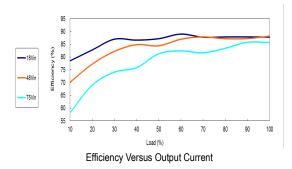
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

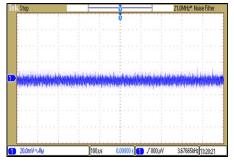


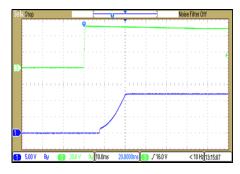
Derating Output Power Versus Ambient Temperature $\label{eq:Vin} V_{\text{in nom}}$

mV∿Ay (1.00ms 0.00000s)(¶ / 48.0mV 41.6652Hb]te3404

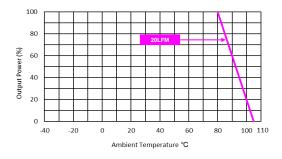
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

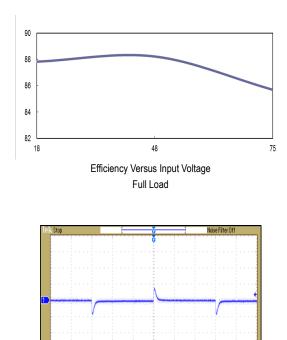



ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

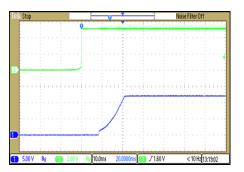

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48S12C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

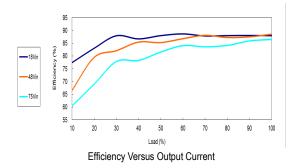
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

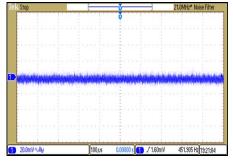


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

mY ∿Ay (1.00ms 0.00000 s) (● / 36.0mV 166.661 Hg|133252

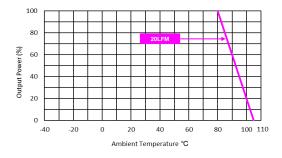
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}{=}V_{\text{in nom}}$

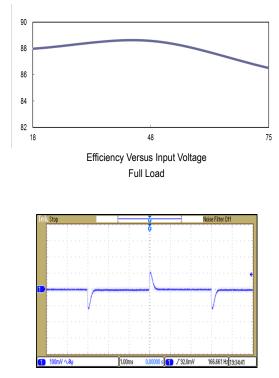


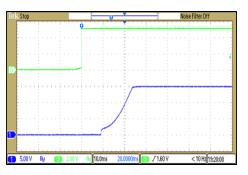

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48S15C $\,$

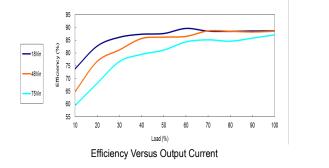


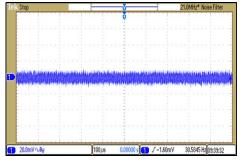

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

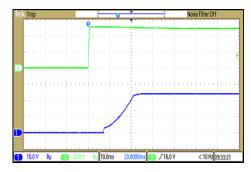

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

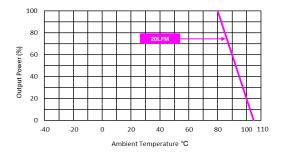
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

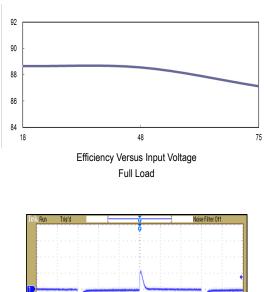


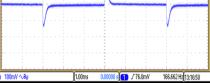

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load


Characteristic Curves

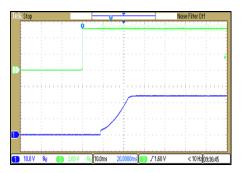
All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48S24C $\,$




Typical Output Ripple and Noise Vin=Vin nom ; Full Load

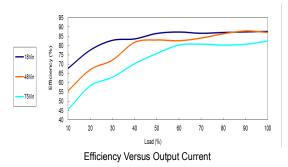


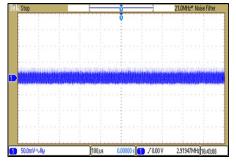
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

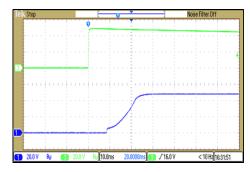


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

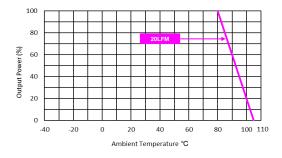
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

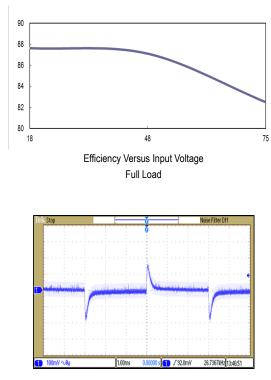


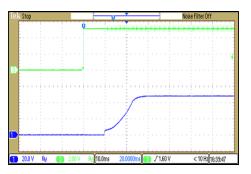

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48S48C $\,$



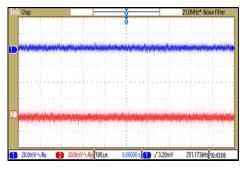

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

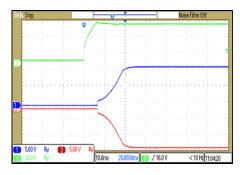

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

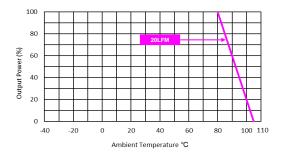
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

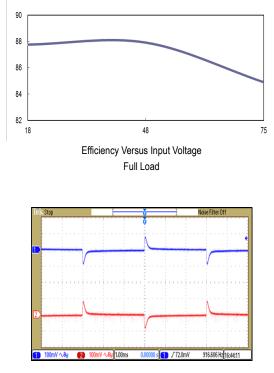


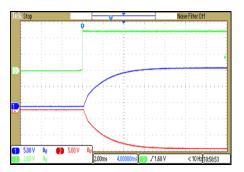

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48D12C $\,$

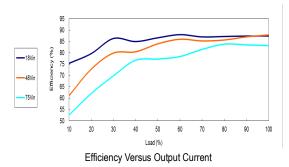


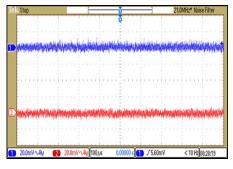

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

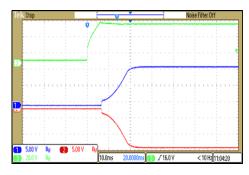

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

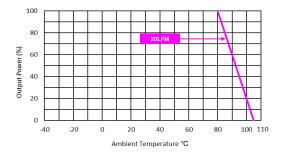
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

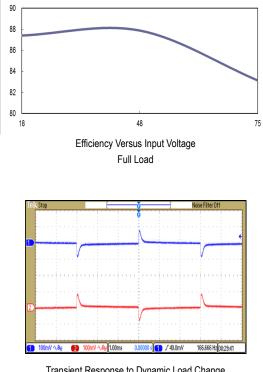


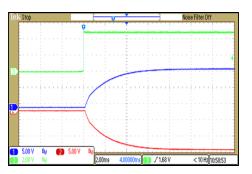

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48D15C $\,$

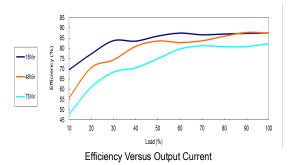


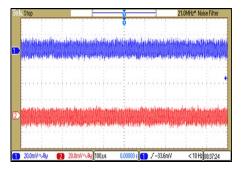

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

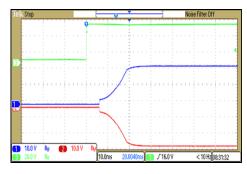

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

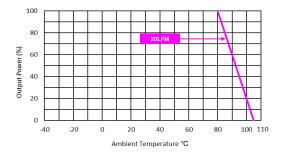
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}{=}V_{\text{in nom}}$

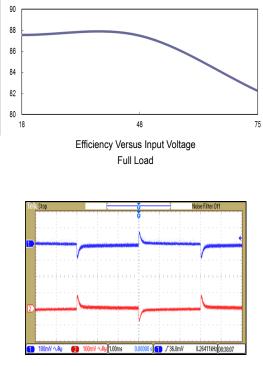


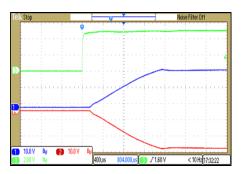

ON/OFF Voltage Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load$


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJWI06-48D24C $\,$



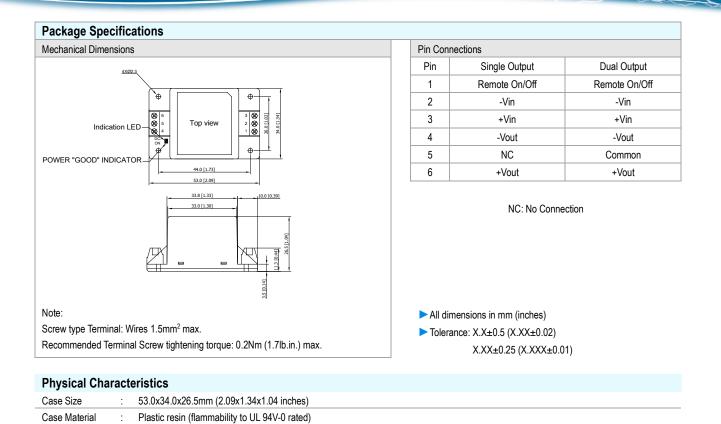

Typical Output Ripple and Noise Vin=Vin nom ; Full Load


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

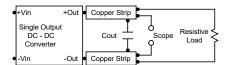


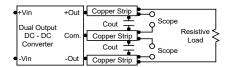
Weight

49.05g

:

POWER FOR A BETTER FUTURE


Date:2025-06-19 Rev:11



Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -500µA.

Overload Protection

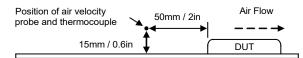
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2µF for the 24V and 48V devices.

Output Ripple Reduction

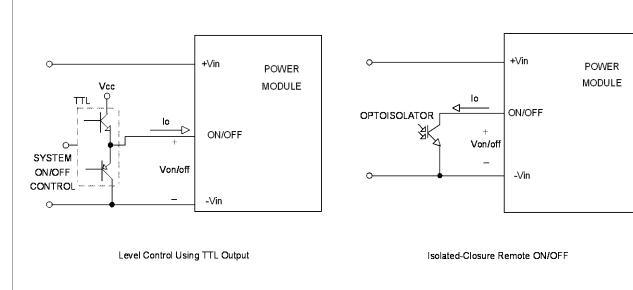
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

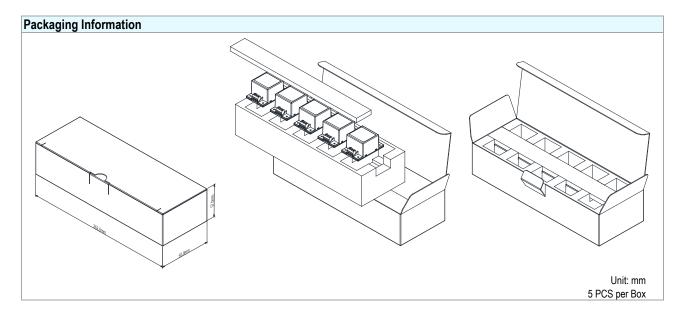


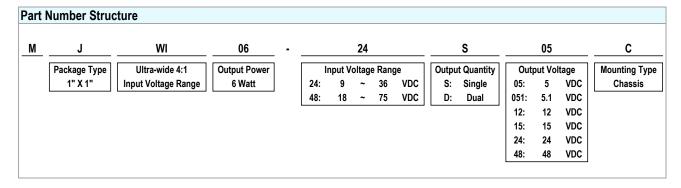
Maximum Capacitive Load

The MJWI06C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.




Remote On/Off Implementation

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/OFF pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to -Vin. If not using the remote ON/OFF feature, please open circuit between ON/OFF pin and -Vin pin to turn the module on.

Date:2025-06-19 Rev:11

MTBF and Reliability

The MTBF of MJWI06C series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MJWI06-24S05C	4,273,256	
MJWI06-24S051C	4,259,133	
MJWI06-24S12C	4.406,984	
MJWI06-24S15C	4,368,198	
MJWI06-24S24C	4,166,765	
MJWI06-24S48C	4,406,682	
MJWI06-24D12C	4,388,233	
MJWI06-24D15C	4,352,789	
MJWI06-24D24C	4,407,196	Usure
MJWI06-48S05C	4,280,597	Hours
MJWI06-48S051C	4,298,723	
MJWI06-48S12C	4,434,170	
MJWI06-48S15C	4,395,527	
MJWI06-48S24C	4,461,236	
MJWI06-48S48C	4,419,312	
MJWI06-48D12C	4,406,740	
MJWI06-48D15C	4,372,461	
MJWI06-48D24C	4,417,907	

Date:2025-06-19 Rev:11