

MKW15M Series EC Note

DC-DC CONVERTER 15W, Reinforced Insulation, Medical Safety

Features

- ► Industrial Standard 2" X 1" Package
- ▶ Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 4200VAC with Reinforced Insulation, rated for 300Vrms Working Voltage
- ► Low I/O Leakage Current < 5µA
- ➤ Operating Ambient Temp. Range -40°C to +85°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► EMI Emission EN 55011 Class A Approved
- ▶ Medical EMC Standard with 4th Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- Medical Safety with 2xMOPP per 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking
- Risk Management Report Acquisition according to ISO 14971

Applications

- ▶ Distributed power architectures
- ➤ Workstations
- Computer equipment
- Communications equipment

Product Overview

Introducing the MINMAX MKW15M series – a cutting-edge range of high-performance 15W medical-approved isolated DC-DC converters encapsulated in a compact 2"x1" package, meticulously designed for medical applications. With a versatile selection of 21 models supporting input voltages of 12, 24, and 48VDC, featuring a wide 2:1 input range and fixed output voltage, this series ensures adaptability to various specifications in the medical device realm. The MKW15M series boasts an I/O isolation specified for 4200VAC with reinforced insulation, rated for a reliable 300Vrms working voltage. Advanced features include under-voltage, overload, over-voltage, and short-circuit protection, along with no minimum load requirement, EMI emission EN 55011 class A approval, low I/O leakage current of 5µA max, and an operating ambient temperature range from -40°C to +85°C, achieved through high efficiency up to 90%.

Aligned with the 4th edition medical EMC standard, the MKW15M series holds medical safety approval with 2xMOPP (Means Of Patient Protection) per the 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1.

In adherence to ISO 14971 Medical Device Risk Management, the MKW15M series undergoes a comprehensive risk assessment process. This ensures not only compliance with high-performance standards but also alignment with the stringent safety benchmarks outlined in ISO 14971. Elevate your medical devices with the MINMAX MKW15M series - a pinnacle of advanced technology, safety, performance, and meticulous Medical Device Risk Management Report Acquisition.

Table of contents

Model Selection Guide	P2	Recommended Pad Layout for Single & Dual Output Converter	. P26
Input Specifications			
Output Specifications			
Isolation, Safety Standards			
General Specifications			
EMC Specifications	P3	Hand Welding Parameter	. P28
Environmental Specifications	P4	Part Number Structure	. P29
Characteristic Curves	P5	MTBF and Reliability	. P29
Package SpecificationsP	26		

Date:2024-12-25 Rev:6

MKW15M Series – EC Notes

Model Selection	Guide								
Model	Input	Output	Output	Inpi	ut	Reflected	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Curre	ent	Ripple	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA (typ.)	mA(typ.)	VDC	μF	%
MKW15-12S05M		5	3000	1453			6.2	5100	86
MKW15-12S051M		5.1	3000	1483			6.2	5100	86
MKW15-12S12M	40	12	1250	1404			15	870	89
MKW15-12S15M	12 (9 ~ 18)	15	1000	1420	20	100	18	560	88
MKW15-12S24M	(9 ~ 10)	24	625	1420				27	220
MKW15-12D12M		±12	±625	1420				±15	440#
MKW15-12D15M		±15	±500	1404			±18	280#	89
MKW15-24S05M		5	3000	710			6.2	5100	88
MKW15-24S051M		5.1	3000	724			6.2	5100	88
MKW15-24S12M	24	12	1250	702			15	870	89
MKW15-24S15M	(18 ~ 36)	15	1000	702	15	50	18	560	89
MKW15-24S24M	(10~30)	24	625	694			27	220	90
MKW15-24D12M		±12	±625	694			±15	440#	90
MKW15-24D15M		±15	±500	702			±18	280#	89
MKW15-48S05M		5	3000	355			6.2	5100	88
MKW15-48S051M		5.1	3000	362			6.2	5100	88
MKW15-48S12M	48	12	1250	355	10		15	870	88
MKW15-48S15M	46 (36 ~ 75)	15	1000	347 10		30	18	560	90
MKW15-48S24M	(30 ~ 13)	24	625	351			27	220	89
MKW15-48D12M		±12	±625	351			±15	440#	89
MKW15-48D15M		±15	±500	355			±18	280#	88

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (100 ms max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models		7.5		
Under Voltage Shutdown	24V Input Models		15		
	48V Input Models		33		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models	Internal Pi Type			

Date:2024-12-25 Rev:6

Output Specifications								
Parameter		Conditions / Model		Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy							±1.0	%Vnom.
Output Voltage Balance		Dual Output, Ba	alanced	Loads			±2.0	%
Line Regulation		Vin=Min. to Ma	x. @Ful	l Load			±0.5	%
		Single Output				±0.5	%	
Load Regulation	10=0	lo=0% to 100% Dual Output		Dual Output			±1.0	%
Minimum Load		No minimum L			oad Requirem	ent		
	0.00.1411	5V & 5.1V	0	M		50		mV _{P-P}
Ripple & Noise	0-20 MHz	12V,15V, ±12V,	+15Vo	Measured with a		100		mV _{P-P}
	Bandwidth	24Vo		MLCC : 4.7µF		150		mV _{P-P}
Transient Recovery Time		050/ 1 1 01	01				300	μS
Transient Response Deviation		25% Load Step Change ₍₂₎			±3	±5	%	
Temperature Coefficient						±0.02	%/°C	
Over Load Protection		Hiccup			150		%	
Short Circuit Protection		(Continuo	ous, Automatic Reco	very (Hiccup I	Node 0.7Hz typ).)	

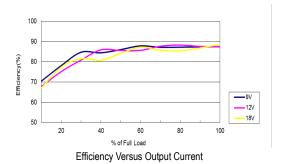
Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
	60 Seconds					
I/O Isolation Voltage	Reinforced insulation, rated for 300Vrms working	4200			VAC	
	voltage					
Leakage Current	240VAC, 60Hz			5	μA	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100kHz, 1V			80	pF	
On factor Other design	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1					
Safety Standards IEC/EN 60601-1 3.2 Edition 2xMOPP						
Safety Approvals	ANSI/AAMI ES60601-1 2xMOPP recognition (UL	ANSI/AAMI ES60601-1 2xMOPP recognition (UL certificate), IEC/EN 60601-1 3.2 Edition (CB-report)				

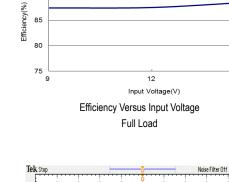
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			285		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,428,181			Hours

EMC Specifications					
Parameter		Standards & Level Perfo			
EMI	Conduction	Conduction EN 55011		Class A	
EWI	Radiation	EIN DOUTI	Without external components	Class A	
	EN 60601-1-2 4 th				
	ESD EN 61000-4-2 Air ± 15kV, Contact ± 8kV		Air ± 15kV, Contact ± 8kV	Α	
	Radiated immunity	EN 61000-4-3 10V/m		Α	
EMS ₍₅₎	Fast transient	EN 6	1000-4-4 ±2kV	Α	
	Surge	EN 6	1000-4-5 ±1kV	Α	
	Conducted immunity	EN 61	000-4-6 10Vrms	Α	
	PFMF	PFMF EN 61000-4-8 100A/m		A	

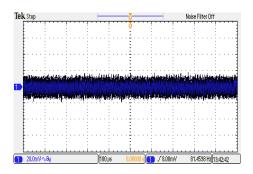
Date:2024-12-25 Rev:6 MKW15M Series – EC Notes 3

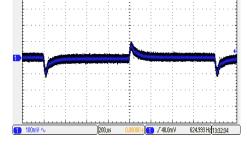
Environmental Specifications				
Parameter	Conditions / Model	Min.	Max.	Unit
	MKW15-24S24M, MKW15-24D12M, MKW15-48S15M		+73	
Operating Ambient Temperature Range Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	MKW15-12S12M, MKW15-12D15M, MKW15-24S12M			
	MKW15-24S15M, MKW15-24D15M, MKW15-48S24M		+70	. °C
	MKW15-48D12	40		
	MKW15-12S15M, MKW15-12S24M, MKW15-12D12M	-40	+67	
	MKW15-24S05M, MKW15-24S051M, MKW15-48S05M			
	MKW15-48S051M, MKW15-48S12M, MKW15-48D15M			
	MKW15-12S05M, MKW15-12S051M		+62	
Thermal Impedance		13		°C/W
Case Temperature			+95	℃
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Altitude			4000	M
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

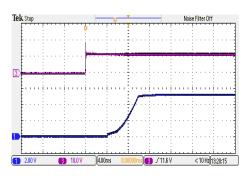

Notes

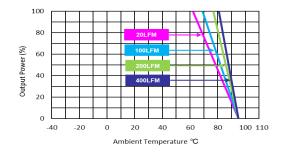

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2024-12-25 Rev:6



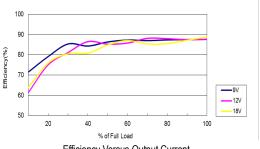

All test conditions are at 25°C The figures are identical for MKW15-12S05M

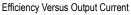

90

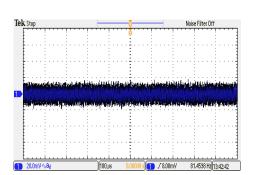


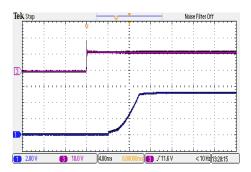
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

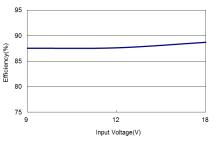
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

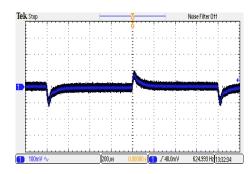


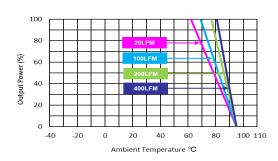

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

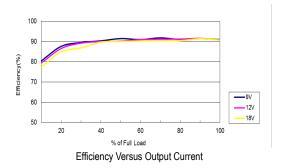

All test conditions are at 25°C $\,$ The figures are identical for MKW15-12S051M $\,$

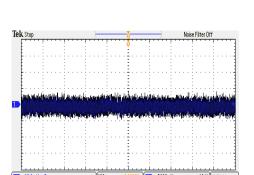



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

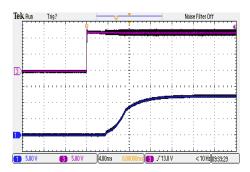

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

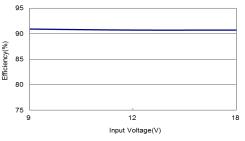

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

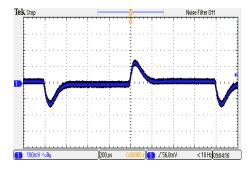


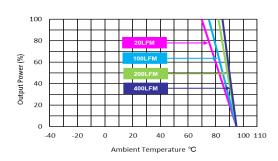
Derating Output Power Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



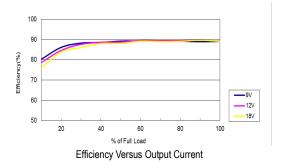
All test conditions are at 25°C The figures are identical for MKW15-12S12M

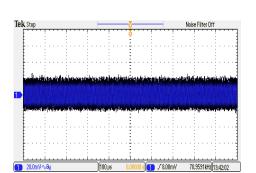



Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

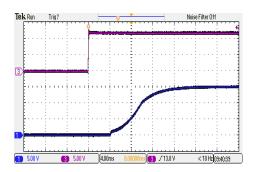

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

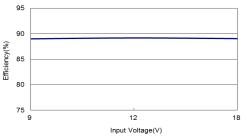

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

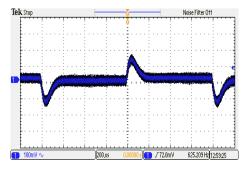


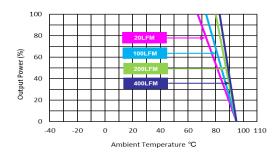
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$



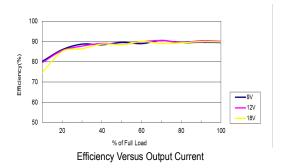
All test conditions are at 25° C The figures are identical for MKW15-12S15M

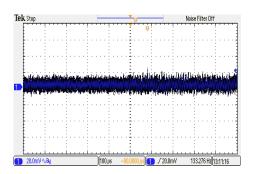



Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

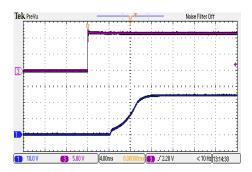

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

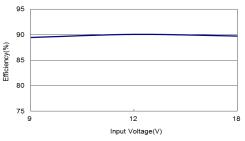

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

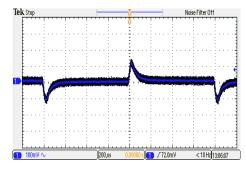


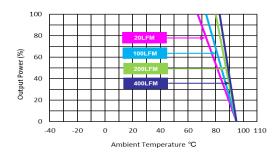
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$



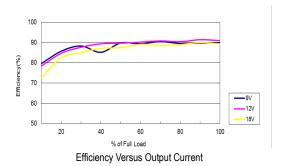
All test conditions are at 25°C The figures are identical for MKW15-12S24M

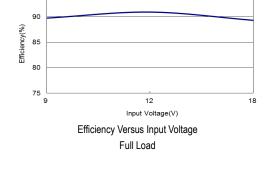


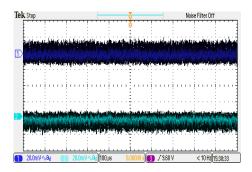

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

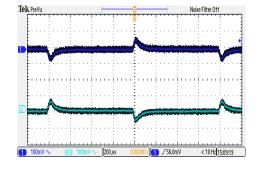

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

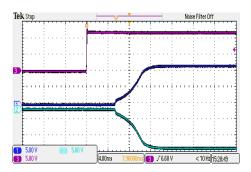

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

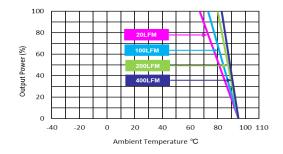



Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in nom}}$



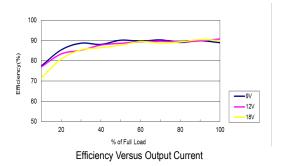
All test conditions are at 25°C $\,$ The figures are identical for MKW15-12D12M $\,$

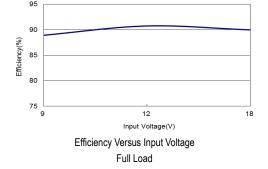




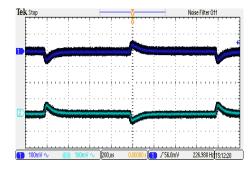
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

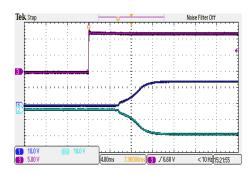


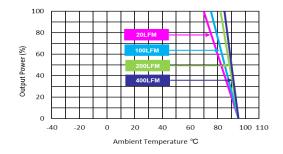

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



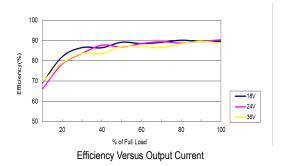
All test conditions are at 25°C The figures are identical for MKW15-12D15M

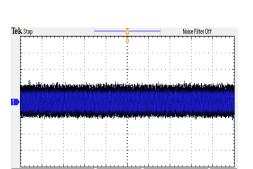




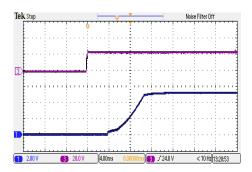
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

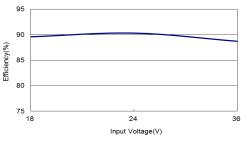



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

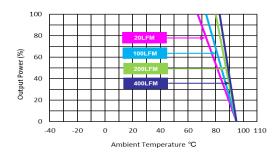
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in nom}}$



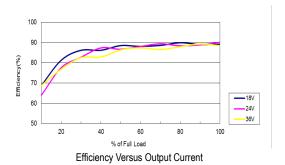
All test conditions are at 25° C The figures are identical for MKW15-24S05M

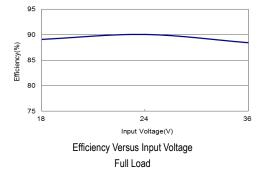


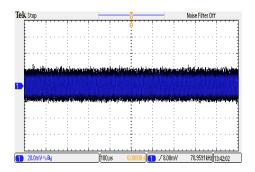

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

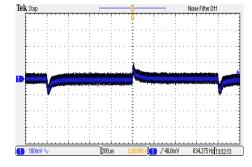

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

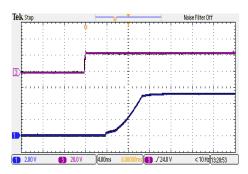

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

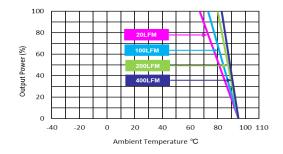



Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in nom}}$



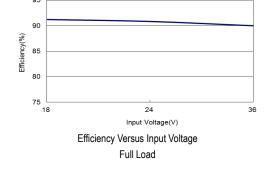
All test conditions are at 25°C $\,$ The figures are identical for MKW15-24S051M $\,$

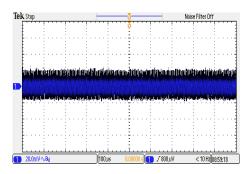


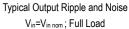


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

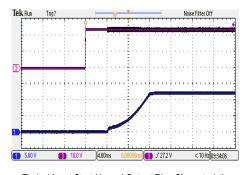
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

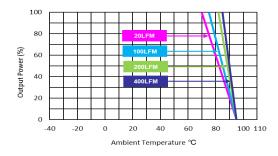

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

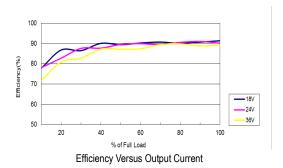


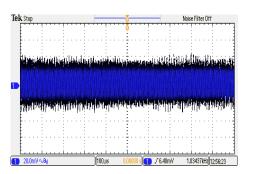

All test conditions are at 25°C The figures are identical for MKW15-24S12M



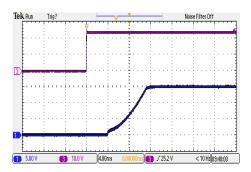


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

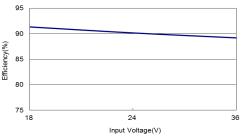

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



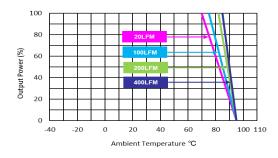
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in nom}}$



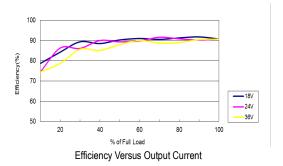
All test conditions are at 25° C The figures are identical for MKW15-24S15M

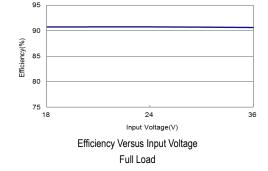


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

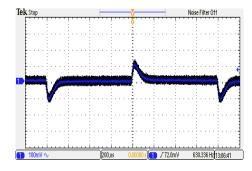

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

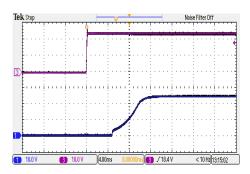

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

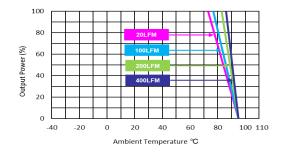


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$



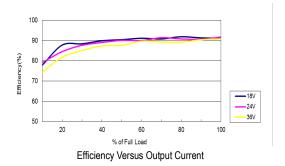
All test conditions are at 25°C The figures are identical for MKW15-24S24M

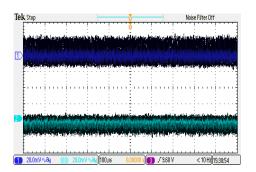




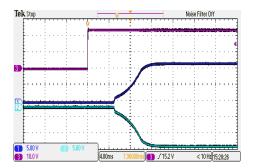
Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

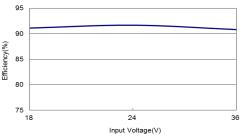


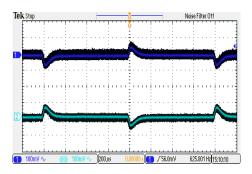

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

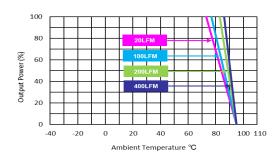
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



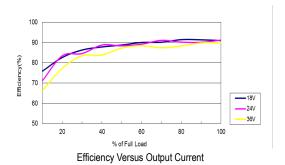
All test conditions are at 25°C $\,$ The figures are identical for MKW15-24D12M $\,$

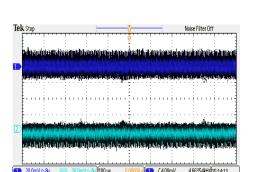



Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

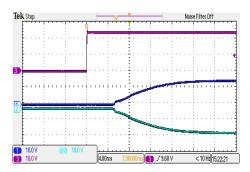

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

Efficiency Versus Input Voltage Full Load

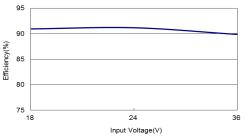

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

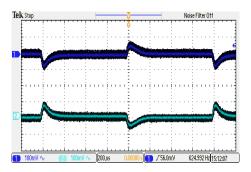


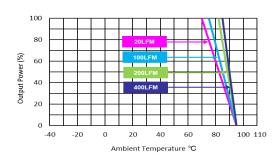
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in nom}}$



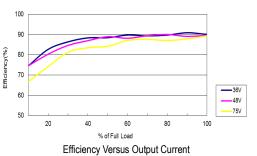
All test conditions are at 25°C $\,$ The figures are identical for MKW15-24D15M $\,$

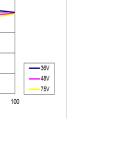



Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

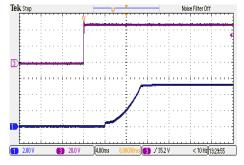

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

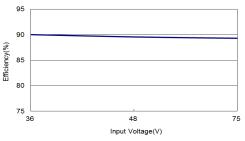
Efficiency Versus Input Voltage Full Load

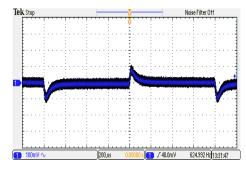

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

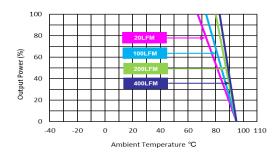


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

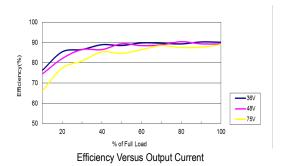

All test conditions are at 25° C The figures are identical for MKW15-48S05M

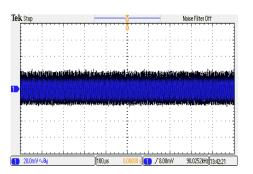



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

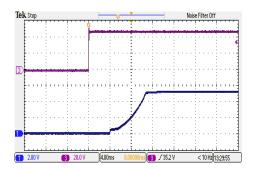

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

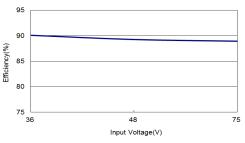

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

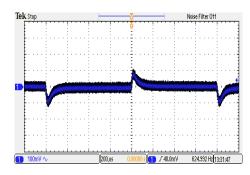


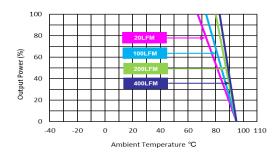
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in nom}}$



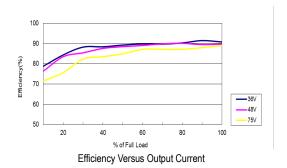
All test conditions are at 25°C $\,$ The figures are identical for MKW15-48S051M $\,$

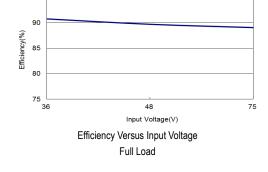


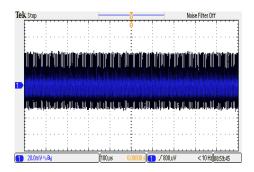

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

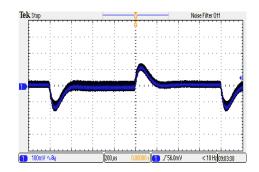

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

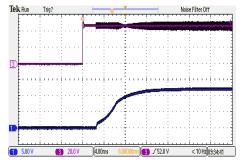
Efficiency Versus Input Voltage Full Load

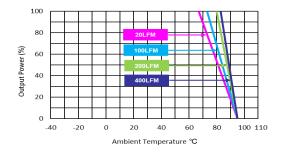

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$



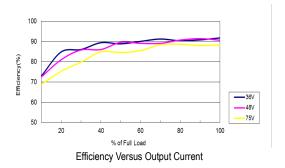

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

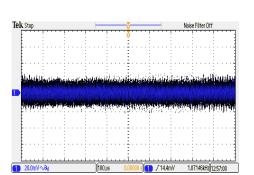

All test conditions are at 25°C The figures are identical for MKW15-48S12M



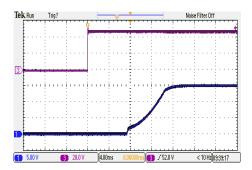

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

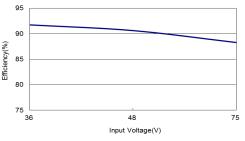

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

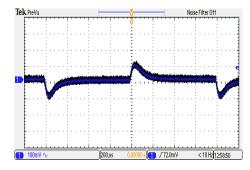


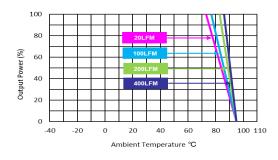
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$



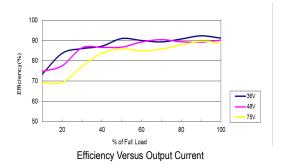
All test conditions are at 25° C The figures are identical for MKW15-48S15M

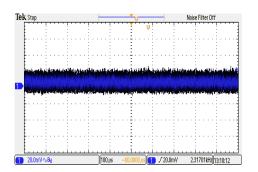



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

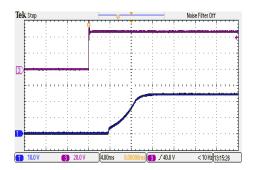

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

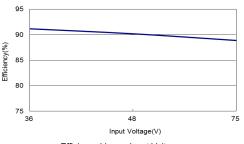

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

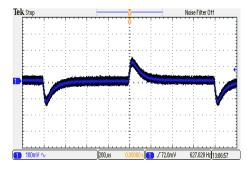


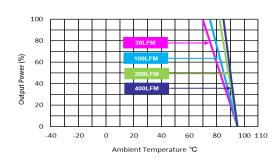
Derating Output Power Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



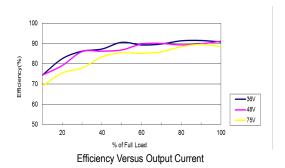
All test conditions are at 25°C The figures are identical for MKW15-48S24M

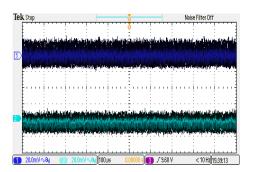



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

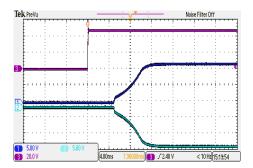

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

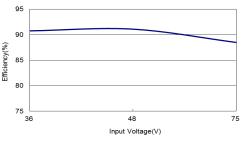

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

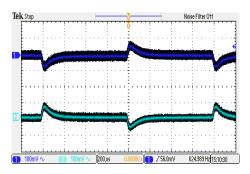


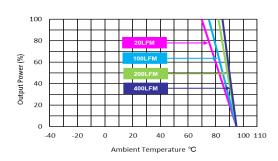
Derating Output Power Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



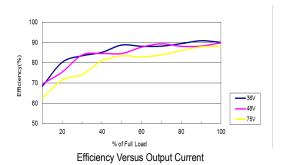
All test conditions are at 25°C $\,$ The figures are identical for MKW15-48D12M $\,$

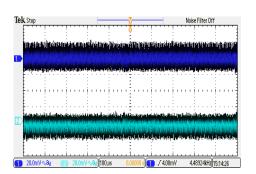



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

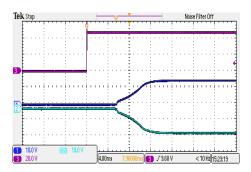

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

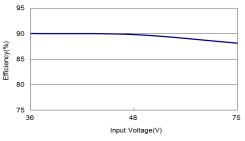

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

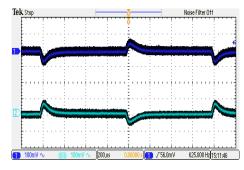


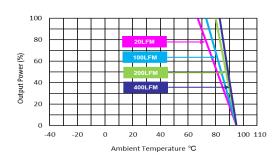
Derating Output Power Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



All test conditions are at 25°C $\,$ The figures are identical for MKW15-48D15M $\,$




Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

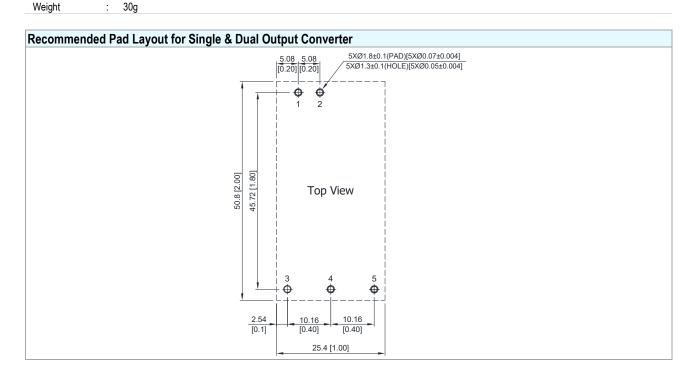
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

Derating Output Power Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

Package Specifications Mechanical Dimensions 45.72 [1.800] **Bottom View** 10.16 12.1

Pin Connections				
Pin	Single Output	Dual Output	Diameter mm (inches)	
1	+Vin	+Vin	Ø 1.0 [0.04]	
2	-Vin	-Vin	Ø 1.0 [0.04]	
3	+Vout	+Vout	Ø 1.0 [0.04]	
4	No Pin	Common	Ø 1.0 [0.04]	
5	-Vout	-Vout	Ø 1.0 [0.04]	

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

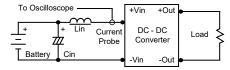

X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

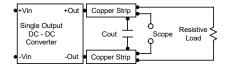
Physical Characteristics

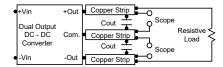
Case Size 50.8x25.4x12.1mm (2.0x1.0x0.48 inches) Plastic resin (flammability to UL 94V-0 rated) Case Material

Pin Material Copper Alloy



Test Setup


Input Reflected-Ripple Current Test Setup

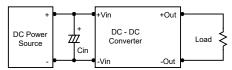

Input reflected-ripple current is measured with a inductor Lin (4.7μH) and Cin (220μF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 4.7µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

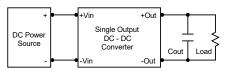
Technical Notes

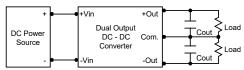
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

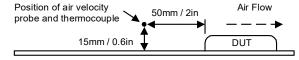
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

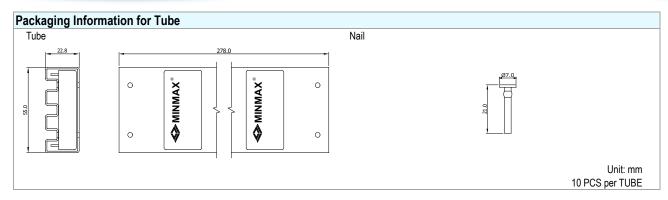

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at $100 \, \text{kHz}$) capacitor of a $10\mu\text{F}$ for the 12V input devices and a $4.7\mu\text{F}$ for the 24V input devices and a $2.2\mu\text{F}$ for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

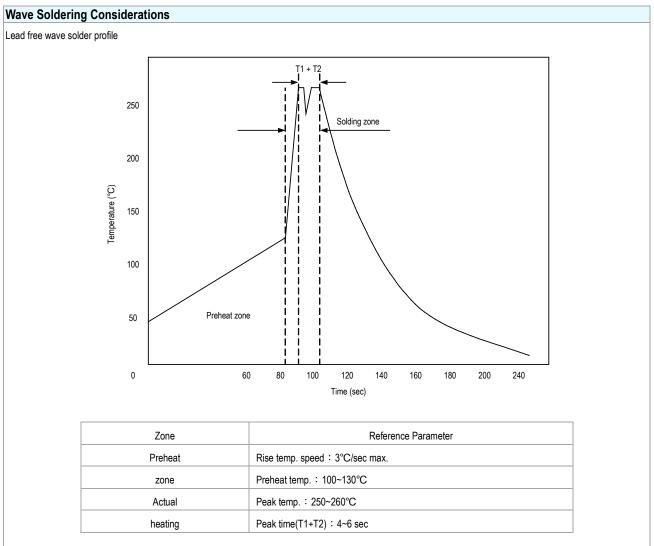
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load


The MKW15M series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag Hand Welding: Soldering iron: Power 60W

Welding Time: 2~4 sec Temp.: 380~400°C

Part Number Structure W 15 05 M K 12 S M Application Package Type Wide 2:1 **Output Power** Input Voltage Range **Output Quantity** Output Voltage 15 Watt VDC Medical 2" X 1" Input Voltage Range 12: 9 18 S: Single 05: 5 VDC VDC 24: 36 VDC D: Dual 051: 18 5.1 48: 36 75 VDC 12: 12 VDC 15: 15 VDC 24: 24 VDC

MTBF and Reliability

The MTBF of MKW15M series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKW15-12S05M	1,428,181	
MKW15-12S051M	1,428,181	
MKW15-12S12M	1,927,407	
MKW15-12S15M	2,026,516	
MKW15-12S24M	1,780,163	
MKW15-12D12M	1,780,163	
MKW15-12D15M	2,108,738	
MKW15-24S05M	1,646,820	
MKW15-24S051M	1,646,820	
MKW15-24S12M	1,975,949	
MKW15-24S15M	2,068,481	Hours
MKW15-24S24M	2,019,674	
MKW15-24D12M	2,019,674	
MKW15-24D15M	2,134,001	
MKW15-48S05M	1,749,638	
MKW15-48S051M	1,749,638	
MKW15-48S12M	1,866,230	
MKW15-48S15M	1,953,706	
MKW15-48S24M	1,809,937	
MKW15-48D12M	1,809,937	
MKW15-48D15M	2,031,988	