

MKW20M Series EC Note

DC-DC CONVERTER 20W, Reinforced Insulation, Medical Safety

Features

- Industrial Standard 2" X 1" Package
- Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 4200VAC with Reinforced Insulation, rated for 300Vrms Working Voltage
- Low I/O Leakage Current < 5µA</p>
- Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- Under-voltage, Overload/Voltage and Short Circuit Protection
- EMI Emission EN 55011 Class A Approved
- Medical EMC Standard with 4th Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- Medical Safety with 2xMOPP per 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking
- Risk Management Report Acquisition according to ISO 14971

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

Introducing the MINMAX MKW20M series - High performance 20W medical-approved isolated DC-DC converters encapsulated in a compact 2"x1" package, meticulously designed for medical applications. With a diverse selection of 21 models accommodating input voltages of 12, 24, and 48VDC, featuring a wide 2:1 input range and fixed output voltage, this series ensures adaptability to various specifications in the medical device realm. The MKW20M series boasts an I/O isolation specified for 4200VAC with reinforced insulation, rated for a reliable 300Vrms working voltage. Advanced features include under-voltage, overload, over-voltage, and short-circuit protection, along with no minimum load requirement, EMI emission EN 55011 class A approval, low I/O leakage current of 5µA max, and an operating ambient temperature range from -40°C to +85°C, achieved through high efficiency up to 90%.

Aligned with the 4th edition medical EMC standard, the MKW20M series holds medical safety approval with 2xMOPP (Means Of Patient Protection) per the 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1.

In adherence to ISO 14971 Medical Device Risk Management, the MKW20M series undergoes a comprehensive risk assessment process. This ensures not only compliance with high-performance standards but also alignment with the stringent safety benchmarks outlined in ISO 14971. Elevate your medical devices with the MINMAX MKW20M series - an epitome of advanced technology, safety, performance, and meticulous Medical Device Risk Management Report Acquisition.

Table of contents

Model Selection Guide	P2	Recommended Pad Layout for Single & Dual Output Converter	P26
Input Specifications	P2	Test Setup	P27
Output Specifications	P3	Technical Notes	P27
Isolation, Safety Standards	P3	Packaging Information for Tube	P28
General Specifications	P3	Wave Soldering Considerations	P28
EMC Specifications	P3	Hand Welding Parameter	P28
Environmental Specifications	P4	Part Number Structure	P29
Characteristic Curves	P5	MTBF and Reliability	P29
Package Specifications	P26		

Date:2024-12-25 Rev:6

MKW20M Series - EC Notes

MINMAX[®]
N18-36VDC=:/1.34A-0.67A
OUT5VDC=:/4000mA
W20-24S05M 1730
//DC CONVERTER RUs

Model Selection	Guide								
Model Number	Input Voltage	Output Voltage	Output Current	Inp Curr		Reflected Ripple	Over Voltage	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA (typ.)	mA(typ.)	VDC	μF	%
MKW20-12S05M		5	4000	1938			6.2	6800	86
MKW20-12S051M		5.1	4000	1977			6.2	0000	86
MKW20-12S12M	10	12	1670	1876			15	1160	89
MKW20-12S15M	12 (9 ~ 18)	15	1333	1893	20	100	18	750	88
MKW20-12S24M	(9~10)	24	840	1888			27	295	89
MKW20-12D12M		±12	±840	1888			±15	590#	89
MKW20-12D15M		±15	±670	1882			±18	380#	89
MKW20-24S05M		5	4000	947			6.2	0000	88
MKW20-24S051M		5.1	4000	966			6.2	6800	88
MKW20-24S12M	24	12	1670	938			15	1160	89
MKW20-24S15M	24 (18 ~ 36)	15	1333	936	15	50	18	750	89
MKW20-24S24M	(10 ~ 30)	24	840	933			27	295	90
MKW20-24D12M		±12	±840	933			±15	590#	90
MKW20-24D15M		±15	±670	931			±18	380#	90
MKW20-48S05M		5	4000	473			6.2	6800	88
MKW20-48S051M		5.1	4000	483			6.2	0000	88
MKW20-48S12M	40	12	1670	469			15	1160	89
MKW20-48S15M	48 (26 - 75)	15	1333	463	10	30	18	750	90
MKW20-48S24M	(36 ~ 75)	24	840	472			27	295	89
MKW20-48D12M		±12	±840	472			±15	590#	89
MKW20-48D15M		±15	±670	465			±18	380#	90

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (100 ms max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models		7.5		
Under Voltage Shutdown	24V Input Models		15		
	48V Input Models		33		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models		Interna	Рі Туре	

Date:2024-12-25 Rev:6

Output Specifications								
Parameter		Conditions	s / Mode	el	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy							±1.0	%Vnom.
Output Voltage Balance		Dual Output, Ba	lanced	Loads			±2.0	%
Line Regulation		Vin=Min. to Max	x. @Ful	l Load			±0.5	%
				Single Output			±0.5	%
Load Regulation	10=0	% to 100%		Dual Output			±1.0	%
Minimum Load				No minimum L	oad Requirem	ent		
	0.00.000	5V & 5.1V	0			50		mV _{P-P}
Ripple & Noise	0-20 MHz	12V,15V, ±12V,	±15Vo	Measured with a		100		mV _{P-P}
	Bandwidth	24Vo		MLCC : 4.7µF		150		mV _{P-P}
Transient Recovery Time		050/1 1.01	0				300	μs
Transient Response Deviation		25% Load Ste	ep Chan	ge(2)		±3	±5	%
Temperature Coefficient							±0.02	%/°C
Over Load Protection		Hicc	up			150		%
Short Circuit Protection		(Continuo	ous, Automatic Reco	overy (Hiccup I	Node 0.7Hz typ	p.)	

Isolation, Safety Standards

Parameter	Conditions	Min.	Тур.	Max.	Unit
	60 Seconds				
I/O Isolation Voltage	Reinforced insulation, rated for 300Vrms working	4200			VAC
	voltage				
Leakage Current	240VAC, 60Hz			5	μA
I/O Isolation Resistance	500 VDC	10			GΩ
I/O Isolation Capacitance	100kHz, 1V			80	pF
	ANSI/AAMI ES 60601-1, 0	CAN/CSA-C22.	.2 No. 60601-1		
Safety Standards	IEC/EN 60601-1	3.2 Edition 2xM	<i>I</i> OPP		
Safety Approvals	ANSI/AAMI ES 60601-1 2xMOPP recognition (UI	L certificate), IE	C/EN 60601-1	3.2 Edition (CE	3-report)

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			285		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,087,344			Hours

EMC Specifications

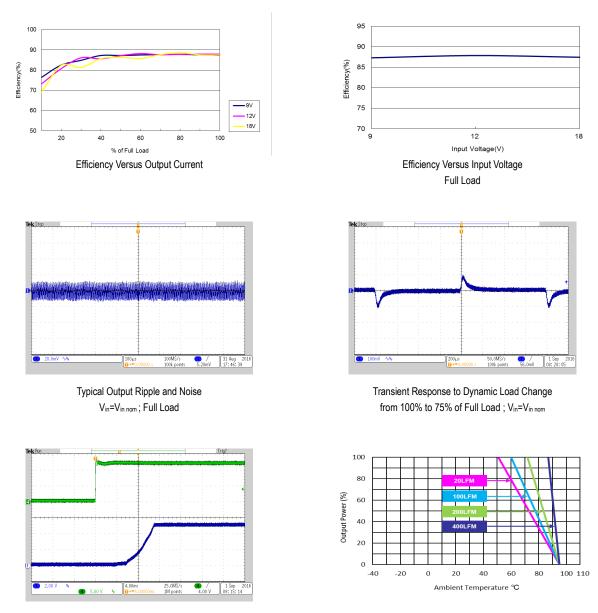
Parameter		Standards & L	evel	Performance
EN41	Conduction			01
EMI	Radiation	EN 55011	Without external components	Class A
	EN 60601-1-2 4 th			
	ESD	EN 61000-4-2	Air ± 15kV, Contact ± 8kV	A
	Radiated immunity	EN	61000-4-3 10V/m	A
EMS ₍₅₎	Fast transient	EN	61000-4-4 ±2kV	A
	Surge	EN	61000-4-5 ±1kV	A
	Conducted immunity	EN 6	61000-4-6 10Vrms	A
	PFMF	EN 6	61000-4-8 100A/M	A

Environmenta	Specifications
--------------	----------------

Parameter	Conditions / Model	Min.	Max.	Unit
	MKW20-24S24M, MKW20-24D12M, MKW20-24D15M MKW20-48S15M, MKW20-48D15M		+66	
Operating Ambient Temperature Range Nominal Vin, Load 100% Inom.	MKW20-12S12M, MKW20-12S24M, MKW20-12D12M MKW20-12D15M, MKW20-24S12M, MKW20-24S15M MKW20-48S12M, MKW20-48S24M, MKW20-48D12M	-40	+62	°C
(for Power Derating see relative Derating Curves)	MKW20-12S15M, MKW20-24S05M, MKW20-24S051M MKW20-48S05M, MKW20-48S051M		+58	
	MKW20-12S05M, MKW20-12S051M		+51	
Thermal Impedance		13.0		°C/W
Case Temperature			+95	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Altitude			4000	М
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

Notes

1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

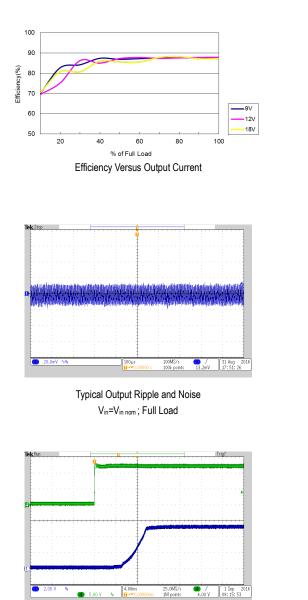

- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- 7 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2024-12-25 Rev:6

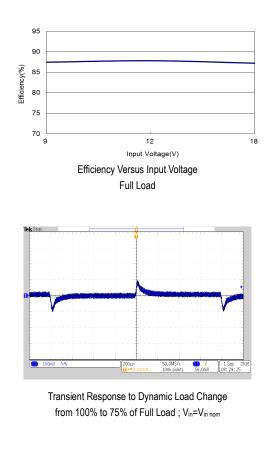
Characteristic Curves

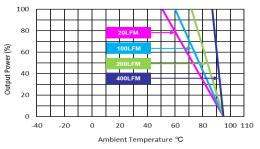
All test conditions are at 25°C $\,$ The figures are identical for MKW20-12S05M $\,$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-12-25 Rev:6

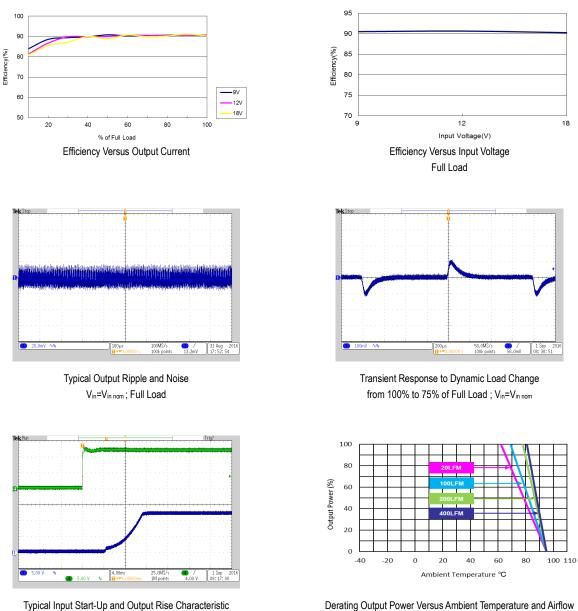



Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MKW20-12S051M $\,$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$



Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MKW20-12S12M $\,$

Vin=Vin nom ; Full Load

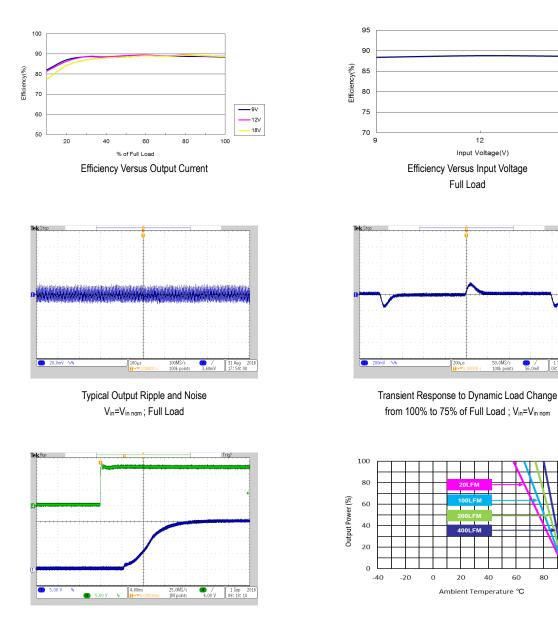
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

12

50.0MS/s 100k points

56 0mV 1 Sep 3 08:33:06

80


60

100 110

18

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MKW20-12S15M $\,$

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom

40

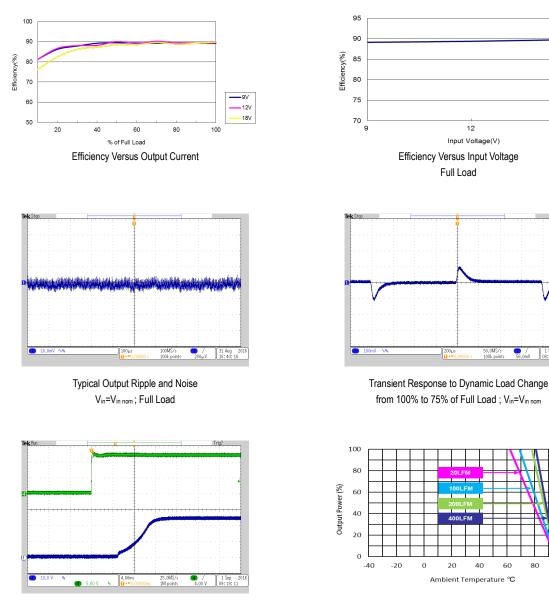
12

Input Voltage(V)

50.0MS/s 100k points

56 0mV 1 Sep 1 08:34:20

80


60

100 110

18

Characteristic Curves

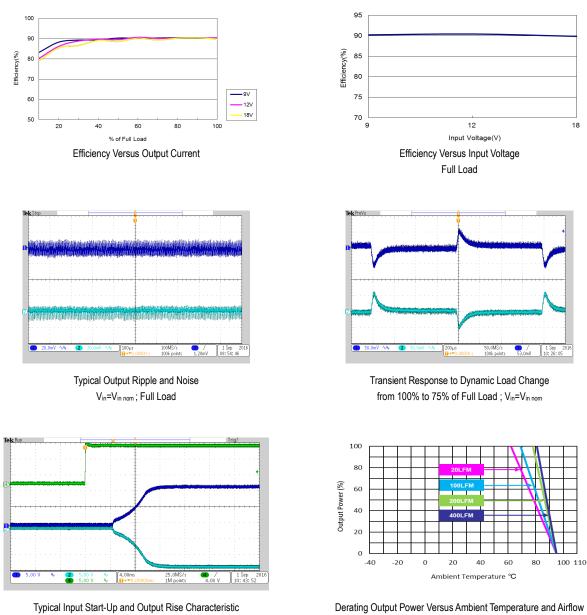
All test conditions are at 25°C $\,$ The figures are identical for MKW20-12S24M $\,$

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom

20

40

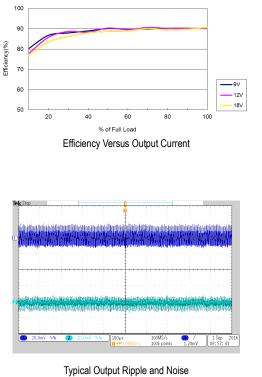


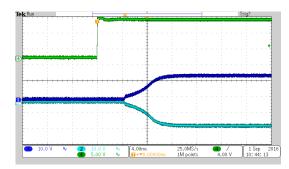
18

Characteristic Curves

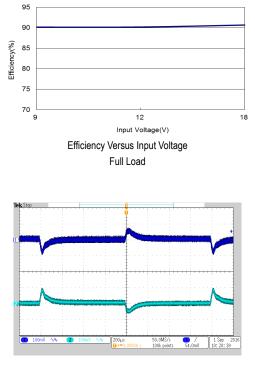
All test conditions are at 25°C $\,$ The figures are identical for MKW20-12D12M $\,$

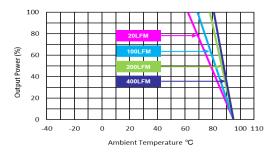
Vin=Vin nom ; Full Load


Vin=Vin nom



Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MKW20-12D15M $\,$


Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $$V_{\mbox{in}}$=V_{\mbox{in}\,\mbox{nom}}$; Full Load}$

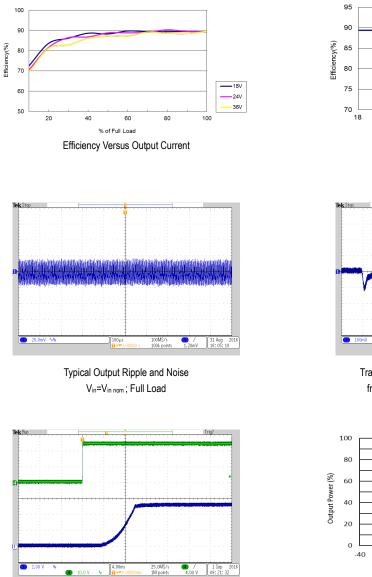
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom


Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$

Date:2024-12-25 Rev:6

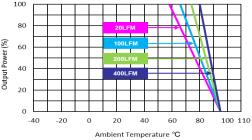
Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MKW20-24S05M $\,$


Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-12-25 Rev:6

Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MKW20-24S051M $\,$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

70 18 24 36 Input Voltage(V) Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$

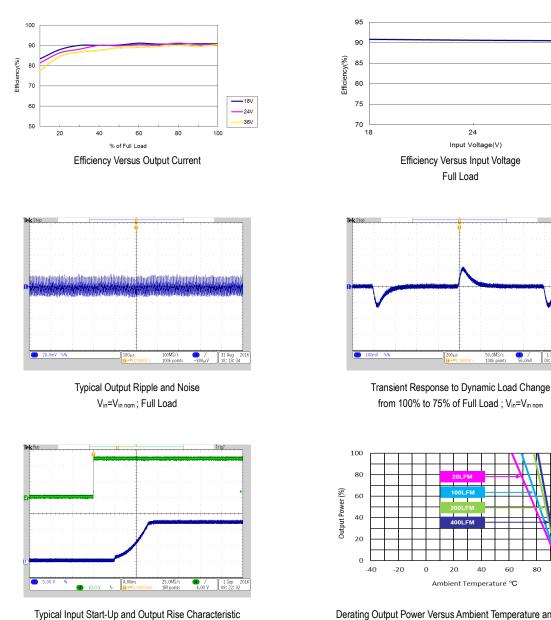
Date:2024-12-25 Rev:6

36

56 0mV

80

60

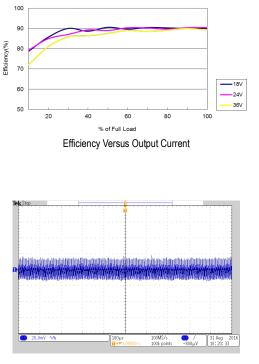

100 110

1 Sep 2 08: 36: 23

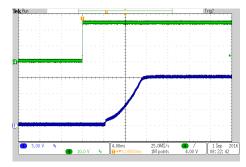
Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MKW20-24S12M $\,$

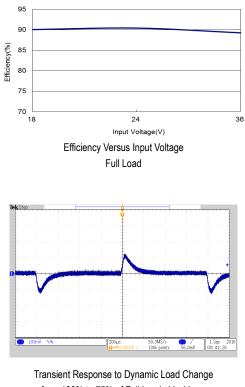
Vin=Vin nom ; Full Load

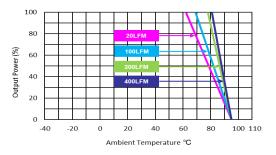


Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom



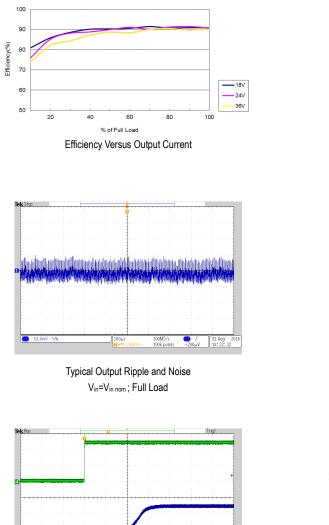
Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MKW20-24S15M $\,$

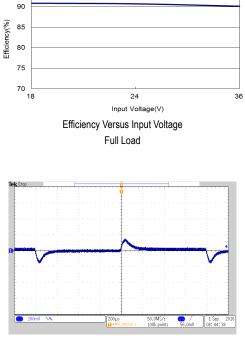

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load

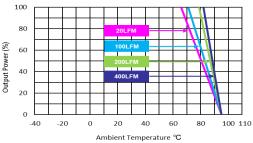
from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$



Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom


Characteristic Curves

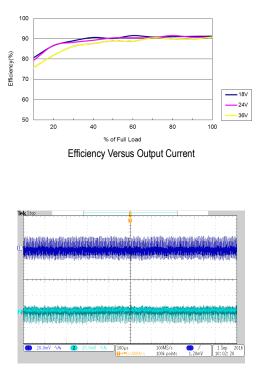
All test conditions are at 25°C $\,$ The figures are identical for MKW20-24S24M $\,$



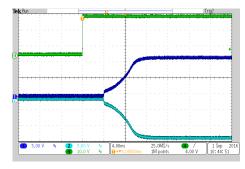
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

95

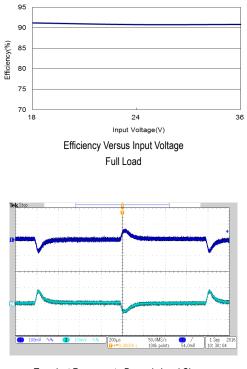
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

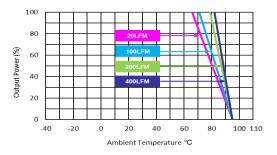

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$

Date:2024-12-25 Rev:6



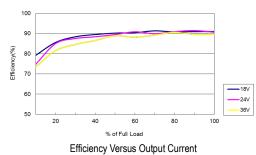
Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MKW20-24D12M $\,$

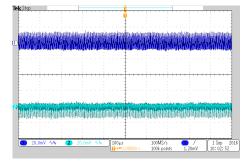

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

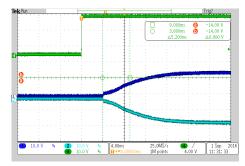
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

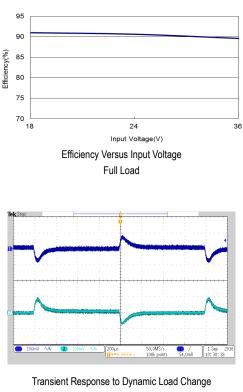

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$

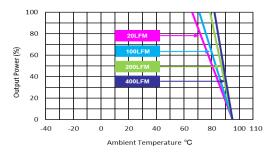
Date:2024-12-25 Rev:6



Characteristic Curves

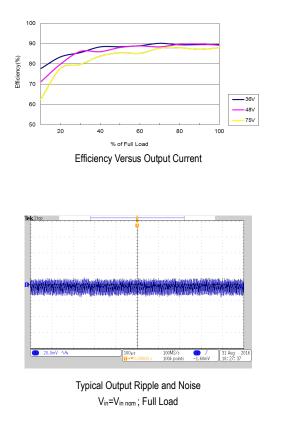

All test conditions are at 25°C $\,$ The figures are identical for MKW20-24D15M $\,$

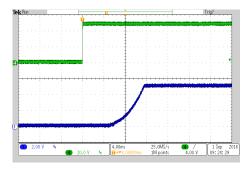


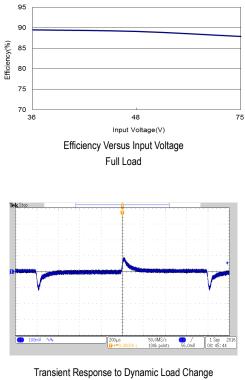

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $$V_{\mbox{in}}$=V_{\mbox{in}\,\mbox{nom}}$; Full Load}$

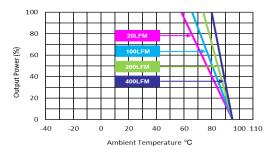
from 100% to 75% of Full Load ; $V_{\text{in}} {=} V_{\text{in nom}}$




Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$


Characteristic Curves

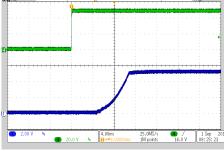
All test conditions are at 25°C $\,$ The figures are identical for MKW20-48S05M $\,$

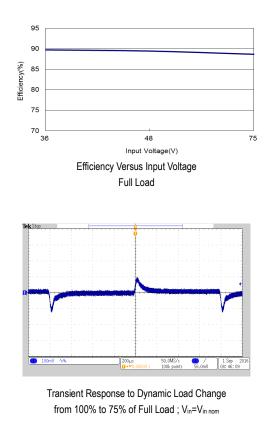


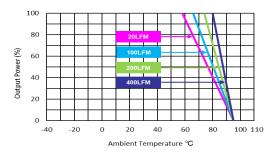
Typical Input Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in\,nom}\$; Full Load

from 100% to 75% of Full Load ; Vin=Vin nom

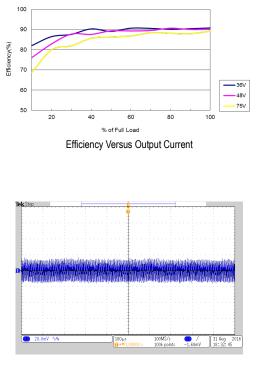
Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$


Date:2024-12-25 Rev:6

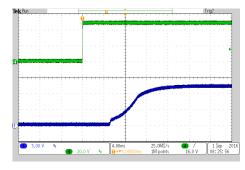

Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MKW20-48S051M $\,$

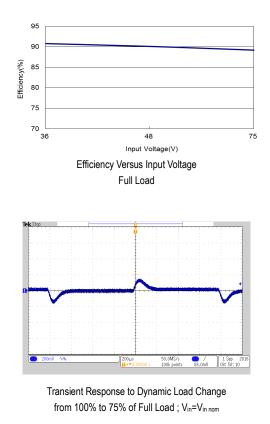
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$

Date:2024-12-25 Rev:6



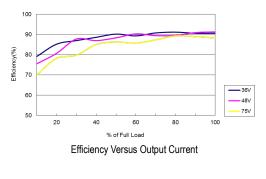
Characteristic Curves

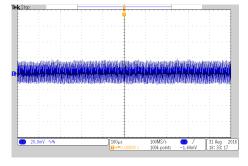

All test conditions are at 25°C $\,$ The figures are identical for MKW20-48S12M $\,$

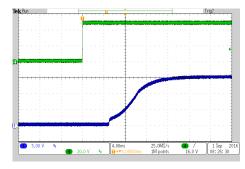
Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

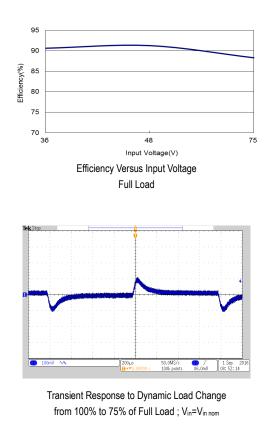
100 80 Output Power (%) 60 40 20 0 -40 -20 20 40 80 100 110 0 60 Ambient Temperature °C

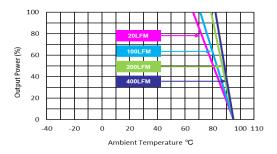

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$




Characteristic Curves

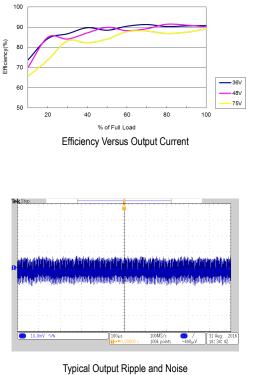
All test conditions are at 25°C $\,$ The figures are identical for MKW20-48S15M $\,$



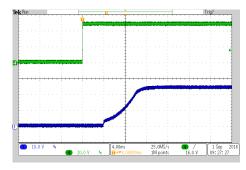


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

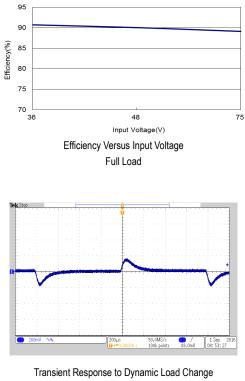
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

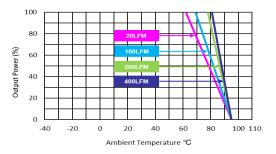


Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$



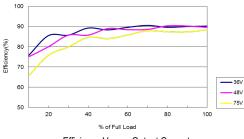
Characteristic Curves

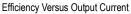

All test conditions are at 25°C $\,$ The figures are identical for MKW20-48S24M $\,$

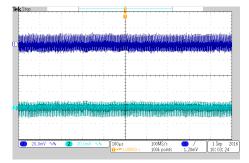

Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in\,nom}\$; Full Load

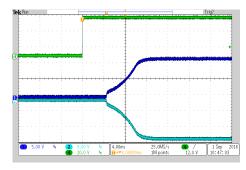
from 100% to 75% of Full Load ; $V_{\text{in}}{=}V_{\text{in nom}}$

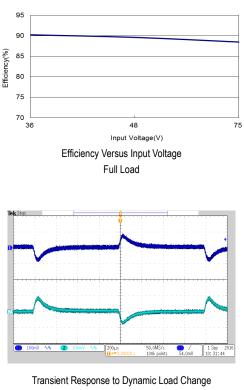



Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$



Characteristic Curves

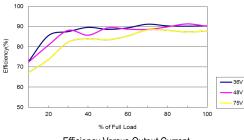

All test conditions are at 25°C $\,$ The figures are identical for MKW20-48D12M $\,$

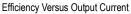


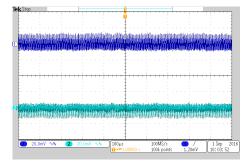
Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

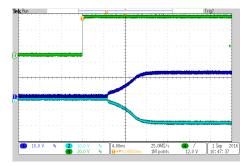
from 100% to 75% of Full Load ; $V_{\text{in}} {=} V_{\text{in nom}}$

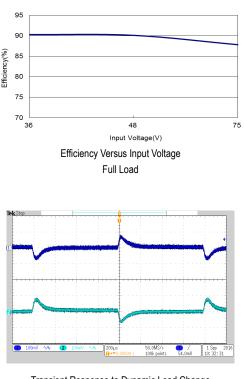


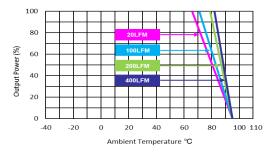

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$



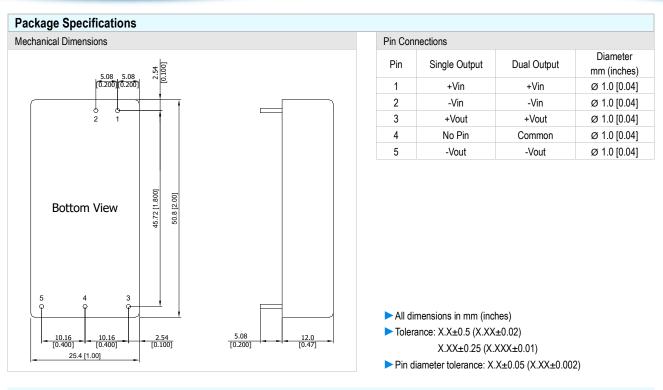
Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MKW20-48D15M $\,$



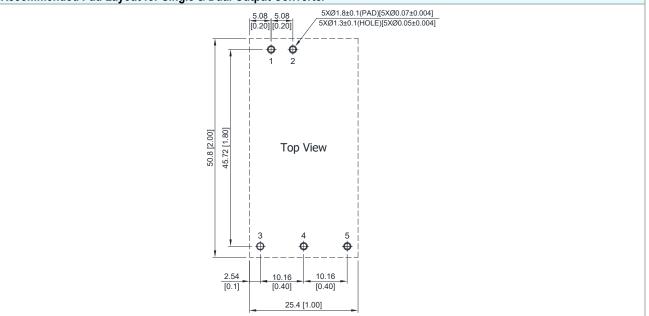

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in\,nom}\$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

Derating Output Power Versus Ambient Temperature and Airflow $$V_{\text{in rom}}$$

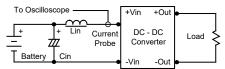
Date:2024-12-25 Rev:6



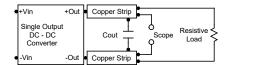
Physical Characteristics

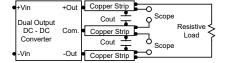
Case Size	:	50.8x25.4x12.1mm (2.0x1.0x0.48 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Pin Material	:	Copper Alloy
Weight	:	30g

Recommended Pad Layout for Single & Dual Output Converter



Test Setup


Input Reflected-Ripple Current Test Setup

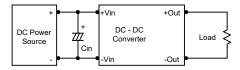

Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 4.7µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

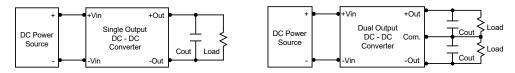
Technical Notes

Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

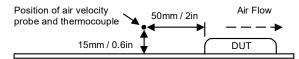
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

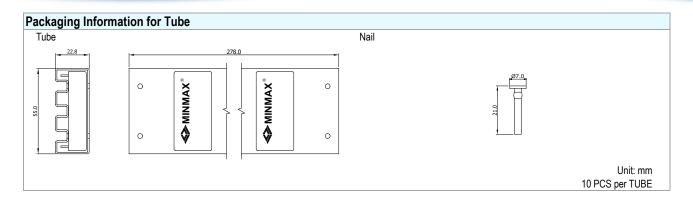
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μ F for the 12V input devices and a 4.7μ F for the 24V input devices and a 2.2μ F for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

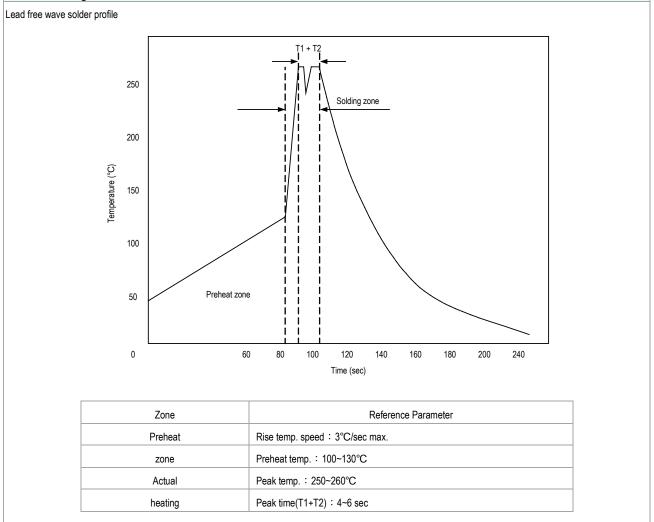
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

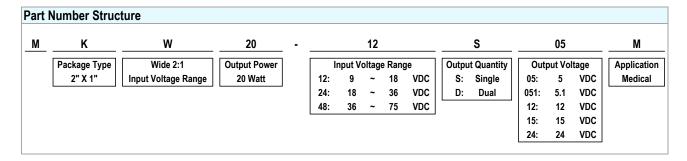

The MKW20M series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Wave Soldering Considerations

Hand Welding Parameter


Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag

Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2024-12-25 Rev:6

MTBF and Reliability

The MTBF of MKW20M series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKW20-12S05M	1,087,344	
MKW20-12S051M	1,087,344	
MKW20-12S12M	1,598,916	
MKW20-12S15M	1,655,302	
MKW20-12S24M	1,565,185	
MKW20-12D12M	1,565,185	
MKW20-12D15M	1,758,649	
MKW20-24S05M	1,308,922	
MKW20-24S051M	1,308,922	
MKW20-24S12M	1,639,993	
MKW20-24S15M	1,691,078	Hours
MKW20-24S24M	1,708,823	
MKW20-24D12M	1,708,823	
MKW20-24D15M	1,780,647	
MKW20-48S05M	1,419,400	
MKW20-48S051M	1,419,400	
MKW20-48S12M	1,641,012	
MKW20-48S15M	1,692,282	
MKW20-48S24M	1,474,814	
MKW20-48D12M	1,474,814	
MKW20-48D15M	1,793,561	

Date:2024-12-25 Rev:6