

FEATURES

- ► Smallest Encapsulated 50W Converter
- ► Ultra-compact 2" X 1" Package
- ➤ Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Excellent Efficiency up to 92%
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► No Min. Load Requirement
- ➤ Overload/Voltage/Temp. and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim
- ► Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

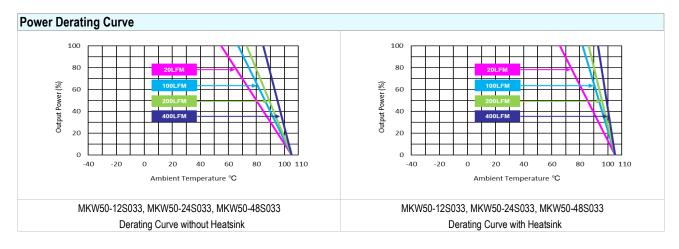
The MINMAX MKW50 series is the latest generation of high performance DC-DC converter modules setting a new standard concerning power density. The product offers fully 50W in an encapsulated, shielded metal package with dimensions of just 2.0"x1.0"x0.4". All models provide wide 2:1 input voltage range and precisely regulated output voltages.

Advanced circuit topology provides a very high efficiency up to 92% which allows an operating temperature range of -40°C to +80°C. Further features include remote On/Off, trimmable output voltage, under-voltage shutdown as well as overload and over-temperature protection. Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and many other space critical applications.

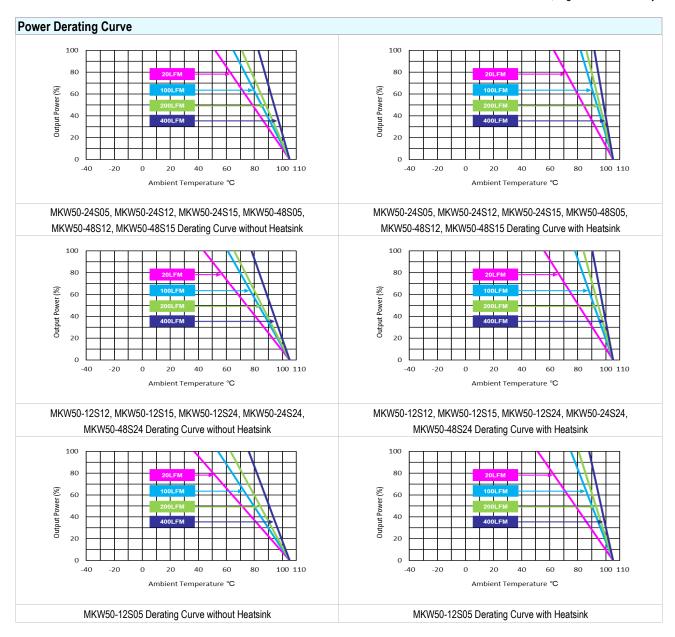
Model	Input	Output	Output	Inp	out	Reflected	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current		Current		Voltage	Load	(typ.)
	(Range)	•	Max.	@Max. Load	@No Load	Current	Protection		@Max. Loa
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	VDC	μF	%
MKW50-12S033		3.3	10000	3090	85		3.9	25800	89
MKW50-12S05	40	5	10000	4630	110		6.2	17000	90
MKW50-12S12	12	12	4170	4580	160	50	15	2900	91
MKW50-12S15	(9~18)	15	3330	4580	160		18	1900	91
MKW50-12S24		24	2080	4570	250		30	750	91
MKW50-24S033		3.3	10000	1550	50		3.9	25800	89
MKW50-24S05	0.4	5	10000	2260	70		6.2	17000	92
MKW50-24S12	24	12	4170	2260	85	40	15	2900	92
MKW50-24S15	(18 ~ 36)	15	3330	2260	85		18	1900	92
MKW50-24S24		24	2080	2290	110		30	750	91
MKW50-48S033		3.3	10000	770	35		3.9	25800	89
MKW50-48S05	40	5	10000	1130	45		6.2	17000	92
MKW50-48S12	48	12	4170	1130	50	30	15	2900	92
MKW50-48S15	(36 ~ 75)	15	3330	1130	50		18	1900	92
MKW50-48S24		24	2080	1150	60		30	750	91

Input Specific	ations						
Parameter		Model	Min.	Тур.	Max.	Unit	
		12V Input Models	-0.7		25		
Input Surge Voltag	ge (100ms. max)	24V Input Models	-0.7		50		
		48V Input Models	-0.7		100		
Start-Up Threshold Voltage		12V Input Models			9		
		24V Input Models			18	VDC	
		48V Input Models			36		
		12V Input Models		8.3			
Under Voltage Sh	utdown	24V Input Models		16.5			
		48V Input Models	48V Input Models 33				
Start Up Time	Power Up	Naminal Vin and Constant Positive Load			30	ms	
	Remote On/Off	Nominal Vin and Constant Resistive Load			30	ms	
Input Filter All Models				Internal	LC Type		

Remote On/Off Control							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0V ~ 1.2V or Short Circuit						
Control Input Current (on)	Vctrl = 5.0V		0.5		mA		
Control Input Current (off)	Vctrl = 0V		-0.5		mA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin		2.5		mA		


Output Specifications									
Parameter	Conditi	Conditions / Model			Max.	Unit			
Output Voltage Setting Accuracy					±1.0	%Vnom.			
Line Regulation	Vin=Min. to I	Max. @ Full Load			±0.5	%			
Load Regulation	lo=0%	% to 100%			±0.5	%			
Minimum Load		No minimum Load Requirement							
Ripple & Noise	0-20 MHz Bandwidth	3.3V & 5V Models ₍₃₎			100	mV_{P-P}			
Rippie & Noise	U-ZU IVITIZ Daliuwiuui	12V, 15V & 24V Models ₍₃₎			150	mV_{P-P}			
Transient Recovery Time	250/ Lood	25% Load Step Change ₍₂₎				μsec			
Transient Response Deviation	25% L0au	Step Change(2)		±3	±5	%			
Temperature Coefficient					±0.02	%/°C			
Trim Un / Down Dangs (Cos Dags 6)	% of Nominal Output	24Vo Models			+20 / -10	%			
Trim Up / Down Range (See Page 6)	Voltage	Other Models			±10	%			
Over Load Protection	H	Hiccup				%			
Chart Circuit Protection	24V	24Vo Models		Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ.)					
Short Circuit Protection	Othe	Other Models			Continuous, Automatic Recovery (Hiccup Mode 1.5Hz typ.)				

Parameter	Conditions / Model	Min.	Тур.	Max.	Unit			
VO la alatia a Valta da	60 Seconds	1500			VDC			
I/O Isolation Voltage	1 Second	1800			VDC			
I/O Isolation Resistance	500 VDC	500 VDC 1000			MΩ			
I/O Isolation Capacitance	100kHz, 1V			2200	pF			
O. Welder Francisco	24Vo Models		285		kHz			
Switching Frequency	Other Models		320		kHz			
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	224,700 Hours						
On fail a Assessment	UL/cUL 60950-1 recognition	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)						
Safety Approvals	UL/cUL 62368-1 recognition	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)						


E-mail:sales@minmax.com.tw Tel:886-6-2923150

EMC Specifications							
Parameter		Standards & Level					
EMI ₍₆₎	Conduction	EN 55020	VACALA and a second as a second	Class A			
	Radiation	Radiation EN 55032	With external components	Class A			
	EN 55024						
	ESD	EN6100	00-4-2 Air ± 8kV , Contact ± 6kV	Α			
EMC	Radiated immunity		Α				
EMS ₍₆₎	Fast transient		EN61000-4-4 ±2kV	Α			
	Surge	EN61000-4-5 ±1kV		Α			
	Conducted immunity	EN61000-4-6 10Vrms		Α			

	Conditions / Model		Ma			
Parameter			without Heatsink	with Heatsink	Unit	
	MKW50-XXS033		56	64		
	MKW50-24S05, MKW50-24S12					
0 " 1 1 1 1 7	MKW50-24S15, MKW50-48S05		53	62		
Operating Ambient Temperature Range	MKW50-48S12, MKW50-48S15	40			°C	
Nominal Vin, Load 100% Inom.	MKW50-12S12, MKW50-12S15	-40			-0	
(for Power Derating see relative Derating Curves)	MKW50-12S24, MKW50-24S24		46	56		
	MKW50-48S24					
	MKW50-12S05		38	49		
	20LFM Convection without Heatsink	12.1			°C/W	
	20LFM Convection with Heatsink	9.8			°C/W	
	100LFM Convection without Heatsink 9.2		-	°C/W		
The small are desired	100LFM Convection with Heatsink 5.4			-	°C/W	
Thermal Impedance	200LFM Convection without Heatsink	7.8			°C/W	
	200LFM Convection with Heatsink	200LFM Convection with Heatsink 4.5		-	°C/W	
	400LFM Convection without Heatsink	5.2			°C/W	
	400LFM Convection with Heatsink	3.0			°C/W	
Case Temperature			+10	05	°C	
Thermal Protection	Shutdown Temperature		110°C	typ.		
Storage Temperature Range		-50	+12	25	°C	
Humidity (non condensing)			9:	5	% rel. H	
RFI	Six-Sided Sh	ielded, Meta	l Case			
Lead Temperature (1.5mm from case for 10Sec.)			26	0	°C	

E-mail:sales@minmax.com.tw Tel:886-6-2923150

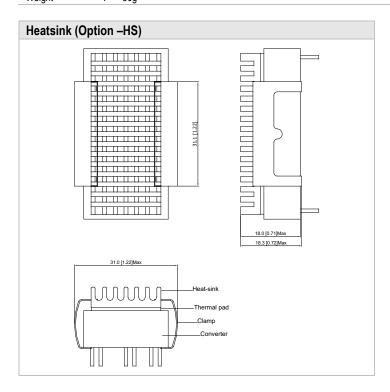
Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a $1\mu F/50V$ MLCC and a $10\mu F/50V$ Tantalum Capacitor.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Specifications are subject to change without notice.
- 9 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Pin Con	Pin Connections						
Pin	Function	Diameter mm (inches)					
1	+Vin	Ø 1.0 [0.04]					
2	-Vin	Ø 1.0 [0.04]					
3	Remote On/Off	Ø 1.0 [0.04]					
4	+Vout	Ø 1.0 [0.04]					
5	-Vout	Ø 1.0 [0.04]					
6	Trim	Ø 1.0 [0.04]					

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)


► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 50.8x25.4x11.0mm (2.0x1.0x0.43 inches)
Case Material : Metal With Non-Conductive Baseplate
Base Material : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy
Potting Material : Epoxy (UL94-V0)

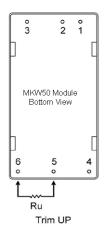
Weight : 30g

Physical Characteristics

Heatsink Material : Aluminum

Finish : Black Anodized Coating

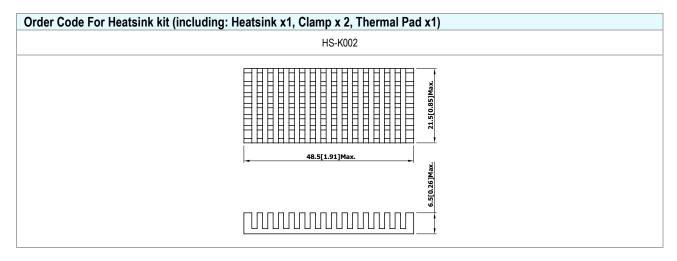
Weight : 9g


- The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2. To increase operating temperature of the DC-DC converter, please refer to Derating Curve.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

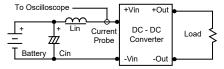
External Output Trimming

Output can be externally trimmed by using the method shown below

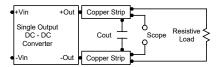


	MKW50-	-XXS033	MKW50	-XXS05	MKW50	-XXS12	MKW50	-XXS15	MKW50	-XXS24
Trim Range	Trim down	Trim up								
(%)	(kΩ)	$(k\Omega)$								
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	333.39	
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	148.80	243.70
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	87.26	
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	56.50	108.50
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	38.04	
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	25.73	63.43
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	16.94	
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	10.35	40.90
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	5.22	
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	1.12	27.38
12										18.37
14										11.93
16										7.10
18										3.34
20										0.34

Order Code Table					
Standard	With heatsink				
MKW50-12S033	MKW50-12S033-HS				
MKW50-12S05	MKW50-12S05-HS				
MKW50-12S12	MKW50-12S12-HS				
MKW50-12S15	MKW50-12S15-HS				
MKW50-12S24	MKW50-12S24-HS				
MKW50-24S033	MKW50-24S033-HS				
MKW50-24S05	MKW50-24S05-HS				
MKW50-24S12	MKW50-24S12-HS				
MKW50-24S15	MKW50-24S15-HS				
MKW50-24S24	MKW50-24S24-HS				
MKW50-48S033	MKW50-48S033-HS				
MKW50-48S05	MKW50-48S05-HS				
MKW50-48S12	MKW50-48S12-HS				
MKW50-48S15	MKW50-48S15-HS				
MKW50-48S24	MKW50-48S24-HS				



Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

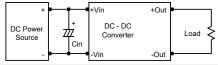
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

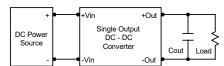
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

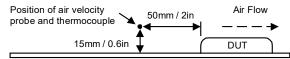
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $33\mu\text{F}$ for the 12V input devices and a $10\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

The MKW50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

No. 77, Sec. 1, Zhonghua W. Rd., South Dist., Tainan City 702, Taiwan Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw