FEATURES

- Industrial Standard 2"x1" Package
- Ultra-wide Input Range 9-36VDC, 18-75VDC, 40-160VDC
-I/O Isolation 3000VAC with Reinforced Insulation
\rightarrow Operating Ambient Temp. Range $-40^{\circ} \mathrm{C}$ to $+88.5^{\circ} \mathrm{C}$
- No Min. Load Requirement
- Under-voltage, Overload/Voltage and Short Circuit Protection
- Remote On/Off, Output Voltage Trim
- Conducted EMI EN 55032/11 Class A Approved
- Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry \& Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- Railway EMC Standard EN 50121-3-2 Approved
- Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- UL/cULIIEC/EN 62368-1(60950-1) Safety Approval \& CE Marking

PRODUCT OVERVIEW

The MINMAX MKZI20 series is a range of high performance 20W isolated DC-DC converter within encapsulated 2"x1" package which specifically design for railway applications. There are 18 models available for the railway system of multi-input voltage range by $24(9 \sim 36) \mathrm{VDC}, ~ 48(18 \sim 75) \mathrm{VDC}, ~$
72/110(40~160)VDC and fixed output voltage regulation. Further features include under-voltage, overload, over voltage, short circuit protection, remote ON/OFF, output voltage trim and conducted EMI EN 55032/11 Class A as well.
MKZI20 series conform to vibration and thermal shock/bump test EN 61373, cooling, dry and damp heat test IEC/EN 60068-2-1,2,30 and railway EMC standard EN 50121-3-2 and complies also with Railway Certification EN 50155 (IEC 60571). MKZI20 series offer an highly reliable solution for critical applications in railway systems, battery-powered equipment, measure instrumentation and many critical applications.

Model Selection Guide								
Model Number	Input Voltage	Output Voltage	Output Current	Input Current		Over Voltage	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	@Max.Load	@No Load	Protection		@Max.Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	$\mu \mathrm{F}$	\%
MKZI20-24S05	$\begin{gathered} 24 \\ (9 \sim 36) \end{gathered}$	5	4000	958	25	6.2	6800	87
MKZI20-24S12		12	1670	960		15	1200	87
MKZI20-24S15		15	1330	955		18	750	87
MKZI20-24S24		24	833	957		30	300	87
MKZI20-24D12		± 12	± 833	969		± 15	600\#	86
MKZI20-24D15		± 15	± 667	969		± 18	380\#	86
MKZI20-48S05	$\begin{gathered} 48 \\ (18 \sim 75) \end{gathered}$	5	4000	479	15	6.2	6800	87
MKZI20-48S12		12	1670	474		15	1200	88
MKZI20-48S15		15	1330	472		18	750	88
MKZI20-48S24		24	833	473		30	300	88
MKZI20-48D12		± 12	± 833	479		± 15	600\#	87
MKZI20-48D15		± 15	± 667	479		± 18	380\#	87
MKZI20-110S05	$\begin{gathered} 110 \\ (40 \sim 160) \end{gathered}$	5	4000	216	10	6.2	6800	84
MKZI20-110S12		12	1670	212		15	1200	86
MKZI20-110S15		15	1330	211		18	750	86
MKZI20-110S24		24	833	211		30	300	86
MKZI20-110D12		± 12	± 833	211		± 15	600\#	86
MKZI20-110D15		± 15	± 667	212		± 18	380\#	86
\# For each output								

Input Specifications								
Parameter	Model			Min.	Typ.	Max.	Unit	
Input Surge Voltage (100ms. max)	24 V Input Models			-0.7	---	50		
	48 V Input Models			-0.7	---	100	VDC	
	110 V Input Models			-0.7	---	170		
Start-Up Threshold Voltage	24 V Input Models			---	---	9		
	48 V Input Models			---	---	18		
	110 V Input Models			---	---	40		
Under Voltage Shutdown	24 V Input Models			---	7.5	---		
	48V Input Models			---	16	---		
	110V Input Models			---	37	---		
Start Up Time	All Models			---	30	50	mS	
Input Filter				Internal Pi Type				
Remote On/Off Control								
Parameter	Conditions			Min.	Typ.	Max.	Unit	
Converter On	$3.5 \mathrm{~V} \sim 12 \mathrm{~V}$ or Open Circuit							
Converter Off	$0 \mathrm{~V} \sim 1.2 \mathrm{~V}$ or Short Circuit							
Control Input Current (on)	V ctrl $=5.0 \mathrm{~V}$			---	0.5	---	mA	
Control Input Current (off)	$\mathrm{Vctrl}=0 \mathrm{~V}$			---	-0.5	---	mA	
Control Common	Referenced to Negative Input							
Standby Input Current	Nominal Vin			---	2.5	---	mA	
Output Specifications								
Parameter	Conditions / Model			Min.	Typ.	Max.	Unit	
Output Voltage Setting Accuracy				---	---	± 1.0	\%Vnom.	
Output Voltage Balance	Dual Output, Balanced Loads			---	---	± 2.0	\%	
Line Regulation	Vin=Min. to Max. @ Full Load			---	---	± 0.2	\%	
Load Regulation	lo=0\% to 100\%		Single Output	---	---	± 0.5	\%	
			Dual Output	---	---	± 1.0	\%	
Minimum Load	No minimum Load Requirement							
Ripple \& Noise	5 Vo $12 \mathrm{Vo}, 15 \mathrm{Vo}, \pm 12 \mathrm{Vo}, \pm 15 \mathrm{Vo}$ 24 Vo		Measured with a 10 $\mathrm{F} / 25 \mathrm{~V}$ MLCC	---	50	---	mV p.p	
			---	100	---	mV p.p		
			Measured with a 4.7 $\mu \mathrm{F} / 50 \mathrm{~V}$ MLCC	---	150	---	mV p.p	
Transient Recovery Time	25\% Load Step Change ${ }_{(2)}$			---	---	300	$\mu \mathrm{sec}$	
Transient Response Deviation				---	± 3	± 5	\%	
Temperature Coefficient				---	---	± 0.02	\%/ ${ }^{\circ} \mathrm{C}$	
Trim Up / Down Range (See Page 8)	\% of Nominal Output Voltage			---	---	± 10	\%	
Over Load Protection	Hiccup			---	150	---	\%	
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ. / 0.5Hz max.)							
General Specifications								
Parameter	Conditions			Min.	Typ.	Max.	Unit	
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds			3000	---	---	VAC	
Isolation Voltage Input/Output to case	Rated For 60 Seconds			1500	---	---	VAC	
I/O Isolation Resistance	500 VDC			1000	---	---	$\mathrm{M} \Omega$	
I/O Isolation Capacitance	$100 \mathrm{kHz}, 1 \mathrm{~V}$			---	1500	---	pF	
Switching Frequency					260	280	310	kHz
MTBF(calculated)	MIL-HDBK-217F@25 ${ }^{\circ} \mathrm{C}$ Full Load, Ground Benign			665,100	---	---	Hours	
Safety Approval	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1 (CB-report), EN 50155, IEC 60571							
	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1 (CB-report)							

EMC Specifications

Parameter	Standards \& Level			Performance
General	Compliance with EN 50121-3-2 Railway Applications			
$\mathrm{EMI}_{(5)}$	Conduction	EN 55032/11	Without external components	Class A
	Radiation		With external components	
$\mathrm{EMS}_{(5)}$	EN 55024			
	ESD	EN 61000-4-2 Air $\pm 8 \mathrm{kV}$, Contact $\pm 6 \mathrm{kV}$		A
	Radiated immunity	EN 61000-4-3 10V/m		A
	Fast transient	EN 61000-4-4 $\pm 2 \mathrm{kV}$		A
	Surge	EN 61000-4-5 $\pm 2 \mathrm{kV}$		A
	Conducted immunity	EN 61000-4-6 10Vrms		A
	PFMF	EN 61000-4-8 100A/m, 1000A/m For 1 Second		A

Environmental Specifications

Parameter	Conditions / Model	Min.	Typ.	Max.		Unit
				without Heatsink	with Heatsink	
Operating Temperature Range Nominal Vin, Load 100\% Inom. (for Power Derating see relative Derating Curves)	MKZI20-48S12, MKZ120-48S15, MKZI20-48S24	-40	---	72	78	${ }^{\circ} \mathrm{C}$
	MKZI2O-24S05, MKZ120-24S12, MKZ120-24S15 MKZI20-24S24, MKZ120-48S05, MKZI20-48D12 MKZI20-48D15		---	69	76	
	MKZI2O-24D12, MKZI2O-24D15, MKZ120-110S12 MKZI20-110S15, MKZI2O-110S24, MKZI20-110D12 MKZI20-110D15		---	66	73	
	MKZI20-110S05		---	59	68	
Thermal Impedance	20LFM Convection without Heatsink	12.1	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	20LFM Convection with Heatsink	9.8	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	100LFM Convection without Heatsink	9.2	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	100LFM Convection with Heatsink	5.4	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	200LFM Convection without Heatsink	7.8	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	200LFM Convection with Heatsink	4.5	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	400LFM Convection without Heatsink	5.2	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	400LFM Convection with Heatsink	3.0	---	---		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Case Temperature		---	---	+105		${ }^{\circ} \mathrm{C}$
Over Temperature Protection (Case)		---	+115	---		${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-50	---	+125		${ }^{\circ} \mathrm{C}$
Cooling Test	Compliance to IEC/EN60068-2-1					
Dry Heat	Compliance to IEC/EN60068-2-2					
Damp Heat	Compliance to IEC/EN60068-2-30					
Shock \& Vibration Test	Compliance to IEC/EN 61373					
Operating Humidity (non condensing)		---	---	95		\% rel. H
RFI	Six-Sided Shielded, Metal Case					
Lead Temperature (1.5mm from case for 10Sec.)		---	---	260		${ }^{\circ} \mathrm{C}$

Power Derating Curve

Power Derating Curve

Notes

1 Specifications typical at $\mathrm{Ta}=+25^{\circ} \mathrm{C}$, resistive load, nominal input voltage and rated output current unless otherwise noted.
2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
3 We recommend to protect the converter by a slow blow fuse in the input supply line.
4 Other input and output voltage may be available, please contact MINMAX.
5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
6 Specifications are subject to change without notice.

Package Specifications

Pin Connections			
Pin	Single Output	Dual Output	Diameter mm (inches)
1	+Vin	+Vin	$\varnothing 1.0[0.04]$
2	-Vin	-Vin	$\varnothing 1.0[0.04]$
3	Remote On/Off	Remote On/Off	$\varnothing 1.0[0.04]$
4	+Vout	+Vout	$\varnothing 1.0[0.04]$
5	Trim	Common	$\varnothing 1.0[0.04]$
6	-Vout	-Vout	$\varnothing 1.0[0.04]$

Physical Characteristics

Case Size	$:$	$50.8 \times 25.4 \times 11.0 \mathrm{~mm}(2.0 \times 1.0 \times 0.43$ inches)
Case Material	$:$	Metal With Non-Conductive Baseplate
Base Material	$:$	FR4 PCB (flammability to UL $94 \mathrm{~V}-0$ rated)
Insulated Frame Material	$:$	Non-Conductive Black Plastic (flammability to UL $94 \mathrm{~V}-0$ rated)
Pin Material	$:$	Copper Alloy
Potting Material	$:$	Silicone (UL94-V0)
Weight	$:$	40.5 g

Physical Characteristics	
Heatsink Material	Aluminum
Finish	Black Anodized Coating
Weight	9 g
The advantage 1. To improve hea reliability of the temperatures. 2. To increase ope please refer to	sink are: crease the stability and at high operating of the DC-DC converter,

"A" Pinning Heatsink (Option, -HS)

External Output Trimming

Output can be externally trimmed by using the method shown below

	MKZI20-XXS05		MKZI20-XXS12		MKZ120-XXS15		MKZI20-XXS24	
Trim Range (\%)	Trim down (k Ω)	Trim up (k Ω)	Trim down $(k \Omega)$	Trim up (k Ω)	Trim down (k Ω)	Trim up (k Ω)	Trim down $(k \Omega)$	Trim up (k Ω)
1	156.81	119.77	419.81	344.74	602.92	482.88	598.97	486.83
2	70.69	53.70	187.68	154.37	269.91	215.89	267.93	217.87
3	41.99	31.67	110.30	90.92	158.91	126.89	157.59	128.21
4	27.64	20.66	71.61	59.19	103.41	82.40	102.42	83.38
5	19.03	14.05	48.40	40.15	70.10	55.70	69.31	56.49
6	13.29	9.65	32.93	27.46	47.90	37.90	47.25	38.56
7	9.18	6.50	21.87	18.39	32.05	25.18	31.48	25.75
8	6.11	4.14	13.58	11.59	20.15	15.65	19.66	16.14
9	3.72	2.31	7.13	6.31	10.90	8.23	10.46	8.67
10	1.80	0.84	1.98	2.07	3.50	2.30	3.11	2.69

Order Code Table			
Standard	With heatsink	With "A" Pinning	With "A" Pinning \& heatsink
MKZI20-24S05	MKZI20-24S05-HS	MKZI20-24S05A	MKZI20-24S05A-HS
MKZI20-24S12	MKZI20-24S12-HS	MKZI20-24S12A	MKZI20-24S12A-HS
MKZI20-24S15	MKZI20-24S15-HS	MKZI20-24S15A	MKZI20-24S15A-HS
MKZI20-24S24	MKZI20-24S24-HS	MKZI20-24S24A	MKZI20-24S24A-HS
MKZI20-24D12	MKZI20-24D12-HS	MKZI20-24D12A	MKZI20-24D12A-HS
MKZI20-24D15	MKZI20-24D15-HS	MKZI20-24D15A	MKZI20-24D15A-HS
MKZI20-48S05	MKZI20-48S05-HS	MKZI20-48S05A	MKZI20-48S05A-HS
MKZI20-48S12	MKZI20-48S12-HS	MKZI20-48S12A	MKZI20-48S12A-HS
MKZI20-48S15	MKZI20-48S15-HS	MKZI20-48S15A	MKZI20-48S15A-HS
MKZI20-48S24	MKZI20-48S24-HS	MKZI20-48S24A	MKZI20-48S24A-HS
MKZI20-48D12	MKZI20-48D12-HS	MKZI20-48D12A	MKZI20-48D12A-HS
MKZI20-48D15	MKZI20-48D15-HS	MKZI20-48D15A	MKZI20-48D15A-HS
MKZI20-110S05	MKZI20-110S05-HS	MKZI20-110S05A	MKZI20-110S05A-HS
MKZI20-110S12	MKZI20-110S12-HS	MKZI20-110S12A	MKZI20-110S12A-HS
MKZI20-110S15	MKZI20-110S15-HS	MKZI20-110S15A	MKZI20-110S15A-HS
MKZI20-110S24	MKZI20-110S24-HS	MKZI20-110S24A	MKZI20-110S24A-HS
MKZI20-110D12	MKZI20-110D12-HS	MKZI20-110D12A	MKZI20-110D12A-HS
MKZI20-110D15	MKZI20-110D15-HS	MKZI20-110D15A	MKZI20-110D15A-HS

Order Code For Heatsink kit (including: Heatsink x1, Clamp x 2, Thermal Pad x1)
HS-K003

Test Setup

Peak-to-Peak Output Noise Measurement Test
Use a $1 \mu \mathrm{~F}$ ceramic capacitor and a $10 \mu \mathrm{~F}$ tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is $0-20 \mathrm{MHz}$. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0 V to 1.2 V . A logic high is 3.5 V to 12 V . The maximum sink current at the on/off terminal (Pin 3) during a logic low is $-100 \mu \mathrm{~A}$.

Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $4.7 \mu \mathrm{~F}$ for the 24 V input devices, a $2.2 \mu \mathrm{~F}$ for the 48 V devices and a $1 \mu \mathrm{~F}$ for the 110 V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7 \mu \mathrm{~F}$ capacitors at the output.

Maximum Capacitive Load

The MKZI20 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below $105^{\circ} \mathrm{C}$. The derating curves are determined from measurements obtained in a test setup.

