

MRZI100 Series EC Note

DC-DC CONVERTER 100W, Reinforced Insulation, Railway Certified

Features

- ► Industrial Standard Quarter Brick Package
- ► Ultra-wide Input Range 36-160VDC
- ▶ I/O Isolation 2000VAC with Reinforced Insulation
- ► Excellent Efficiency up to 91.5%
- ▶ Operating Baseplate Temp. Range -40°C to +105°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage/Temp. and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim, Output Sense
- ▶ Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- ► Railway EMC Standard EN 50121-3-2 Approved
- ► Railway Certified EN 50155 (IEC60571) Approved
- ► Fire Protection Test EN 45545-2 Approved
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment
- Communications equipment

Product Overview

MRZI100 series from MINMAX DC-DC converter manufacturer is ideal for railway applications. Its input voltage range is designed at 36-160 VDC, which is suitable for applications that require low voltage startup. The packing style of MRZI100 100W DC-DC converter is an international 1/4 brick type package. To avoid the damage of lightning strikes, MRZI100 series 100W DC-DC converter has a 2000VAC isolation withstand voltage and a reinforced insulation system. In addition, MRZI100 series passed up to 500 times of cold and heat cycle tests to ensure thermal performance and reliability for long-time use, making the temperature reach 105°C but still operating smoothly based on heat dissipation management structure design.

MRZI100 100W DC-DC converter is able to meet 100% current and power requirements of the back-end load system, offering the rated output voltage. Because of its outstanding circuit topology, the efficiency of MRZI100 is up to 91.5%. Even at the moment of the startup, it can still keep high stability of overall efficiency, power loss, and heat generation. Besides, it also passed the Railway Code Certification EN 50155 (IEC 60571), Fire Test Code Certification EN 45545-2, and Safety Code Certification IEC/EN/UL 62368-1.

To provide more flexible design requirements, MRZI100 100W DC-DC converter owns output voltage sensing functions as well as positive/negative logic remote control switches. Also, it is equipped with abnormality protective functions like output short-circuit protection, input under-voltage protection, over-temperature protection, etc. to make sure that the power module and the back-end system can get immediate protection when an abnormal operation. If you need more details about our 100W DC-DC converters, welcome to contact MINMAX railway power converters supplier to help you!

Table of contents

Model Selection GuideP2	Recommended Pad Layout	P23
Input SpecificationsP2		
Output SpecificationsP2		
General SpecificationsP2		
Remote On/Off ControlP3		
EMC SpecificationsP3	Remote On/Off Implementation	P26
Environmental SpecificationsP3	Packaging Information	P27
Characteristic CurvesP4	Wave Soldering Considerations	P28
Package SpecificationsP19	Hand Welding Parameter	P28
HeatsinkP20	Part Number Structure	P29
PCB Installation of End UsersP21	MTBF and Reliability	P29

Date:2025-04-18 Rev:13

Model Selection	Guide								
Model	Input	Output	Output	Output	Inp	out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Power	Current	Cur	rent	Voltage	Load	(typ.)
	(Range) (9)			Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	W	Α	mA(typ.)	mA(typ.)	VDC	μF	%
MRZI100-110S05		5	100	20	993.5	6	6.2	34000	91.5
MRZI100-110S12	110	12	100.8	8.4	1007	6	15	5830	91
MRZI100-110S15	110 (36 ~ 160)	15	100.5	6.7	1009	6	18	3670	90.5
MRZI100-110S24	(30 ~ 100)	24	100.8	4.2	1029	6	30	1460	89
MRZI100-110S54		54	99.9	1.85	1020	6	66	380	89

Input Specifications									
Parameter	Min.	Тур.	Max.	Unit					
Input Voltage Range (9)	36	110	160						
Input Surge Voltage (100ms. max)	-0.7		170	VDC					
Start-up Threshold Voltage			36	VDC					
Under Voltage Shutdown		35							
Input Filter		Internal Capacitor							

Output Specifications							
Parameter	Conditions			Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%
Line Regulation		Vin=Min. to Max. (@ Full Load			±0.2	%
Load Regulation		Min. Load to F	ull Load			±0.3	%
Min. Load			No minimum Load	Requiremen	t		
		5V Output	Measured with a		100		mV _{P-P}
		12V, 15V Output	22µF/25V POLYMER		150		mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	24V Output	Measured with a 33µF/35V POLYMER		200		mV _{P-P}
		54V Output	Measured with a 1µF/100V MLCC		300		mV _{P-P}
Start Up Time (Power On)					50		ms
Transient Recovery Time		050/ 1 1 01 1	21		250		μS
Transient Response Deviation		25% Load Step (onange (2)		±3	±5	%
Temperature Coefficient						±0.02	%/°C
Tim Ha / David Barra	0/ - (N)-	-1.0.1	Other Models			±10	%
Trim Up / Down Range (8)	% of Nominal Output Voltage 54V Output					+5 / -15	%
Over Load Protection (7)		Cur	rent Limitation at 150% t	yp. of lout ma	ax., Hiccup		
Short Circuit Protection		Continu	uous, Automatic Recover	y (Hiccup Mo	de 0.3Hz typ).)	

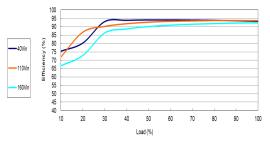
General Specificat	ions							
F	Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage		Reinforced Insulation, Rated For 60 Seconds	2000			VAC		
Isolation Voltage	Input to case	Rated For 60 Seconds	1500			VAC		
	Output to case	Rated For 60 Seconds	500			VAC		
I/O Isolation Resistance		500 VDC	10			GΩ		
I/O Isolation Capacitance	e	100kHz, 1V		1500		pF		
Cuitabia a Fasausaasu		Other Models		214		kHz		
Switching Frequency		54V Output		173		kHz		
MTBF(calculated)		MIL-HDBK-217F@25°C Full Load, Ground Benign 605,102				Hours		
		EN 50155, IE	EN 50155, IEC 60571					
Safety Standards		UL/cUL 62368-1 recognition(UL	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1					

Date:2025-04-18 Rev:13 MRZI100 Series – EC Notes 2

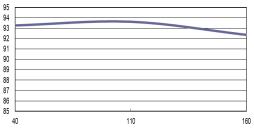
Remote On/	Off Control							
	Parameter		Conditions	Min.	Тур.	Max.	Unit	
Converter On		Converter On	3.5V ~ 12V or 0	Open Circuit				
Positive logic (S	tanuaru)	Converter Off	0V ~ 1.2V or S	hort Circuit				
Converter On			0V ~ 1.2V or S	hort Circuit				
Negative logic (Ориоп)	Converter Off 3.5V ~ 12V or Open Circuit						
Desitive lesie	Control Innut Coment	Converter On	Vctrl = 5.0V			0.5	mA	
Positive logic	Control Input Current	Converter Off	Vctrl = 0V			-0.5	mA	
Nanati in Innia	Control Innut Coment	Converter On	Vctrl = 0V			-0.5	mA	
Negative logic	Control Input Current	Converter Off	Vctrl = 5.0V 0.5					
Control Common			Referenced to Negative Input					
Standby Input C	urrent		Nominal Vin		3		mA	

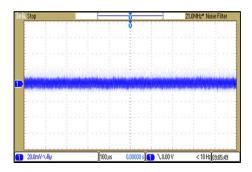
EMC Specifications							
Parameter		Standards & Level					
General		Compliance with EN 50121-3-2 Railway Applications					
FMI	Conduction	EN 55032/11	With automal components	Class A			
EMI (5)	Radiation	EN 55032/11	With external components	Class A			
	EN 55024, EN 55035						
	ESD	Direct discharge	Indirect discharge HCP & VCP	_			
	E9D	EN 61000-4-2 air ± 8kV, Contact ± 6kV	Contact ± 6kV	A			
FMC	Radiated immunity	EN 61000-4-3	Α				
EMS (5)	Fast transient	EN 61000-4-4	1 ±2kV	Α			
	Surge	EN 61000-4-5	5 ±1kV	Α			
	Conducted immunity	EN 61000-4-6	10Vrms	Α			
	PFMF	EN 61000-4-8	3 3A/M	Α			

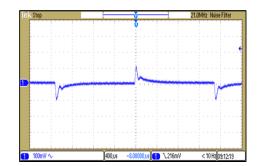
Environmental Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Baseplate Temperature Range		-40		+105	°C		
Over Temperature Protection (Baseplate)			+110		°C		
Storage Temperature Range		-50		+125	°C		
Cooling Test	Compliance to IEC/EN60068-2-1						
Dry Heat	Compliance to	IEC/EN60068-	2-2				
Damp Heat	Compliance to I	EC/EN60068-2	2-30				
Vibration and Shock/Bump	Compliance t	o IEC/EN 6137	73				
Operating Humidity (non condensing)			5	95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		-		260	°C		

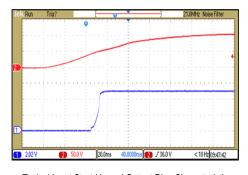

Notes

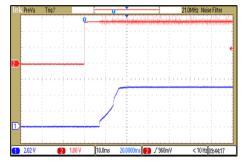
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Other input and output voltage may be available, please contact MINMAX.
- 4 It is necessary to parallel a capacitor across the input pins under normal operation. Minimum Capacitance: 150μF/ 250V KXJ.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 The hot-swap operation is extremely prohibited.
- 7 Over Current Protection (OCP) is built in and works over 130% of the rated current or higher. However, use in an over current situation over 4 seconds must be avoided whenever possible.
- 8 Do not exceed maximum power specification when adjusting output voltage. Please see the External Output Trimming table at page 24.
- 9 *Input Voltage Vin= 36VDC/1s for Start-up Operation and Vin= 40VDC for Continuous Operation
- 10 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


Date: 2025-04-18 Rev: 13 MRZI100 Series – EC Notes 3

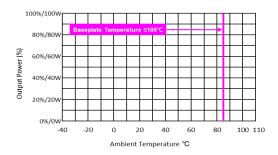

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S05 $\,$

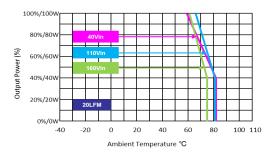

Efficiency Versus Output Current

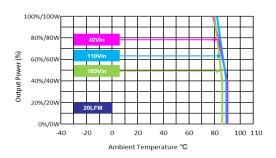

Efficiency Versus Input Voltage Full Load

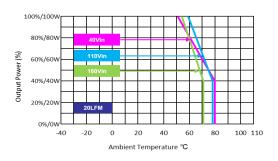

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

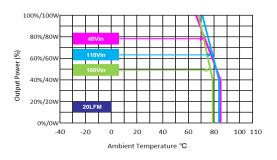
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$

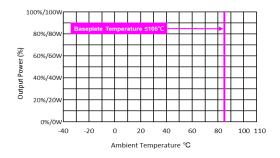

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \, ; \, Full \; Load$

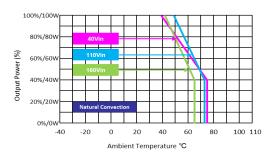

All test conditions are at 25 $^{\circ}$ C The figures are identical for MRZI100-110S05 (continued)

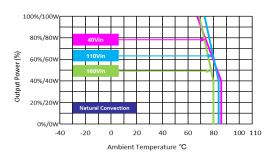

Derating Output Power Versus Ambient Temperature Vin=Vin nom

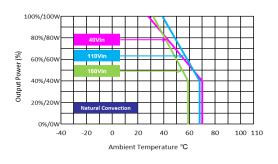

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

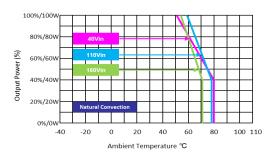
Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))


Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

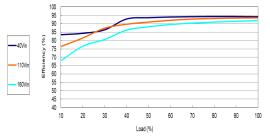

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

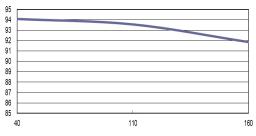

All test conditions are at 25 $^{\circ}$ C The figures are identical for MRZI100-110S05 (continued)

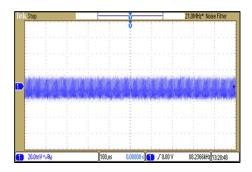

Derating Output Power Versus Ambient Temperature Vin=Vin nom

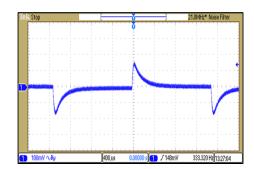

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

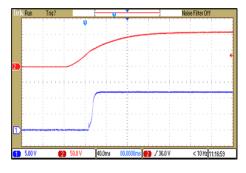
Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

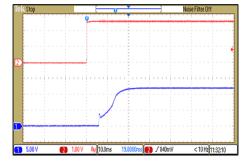

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

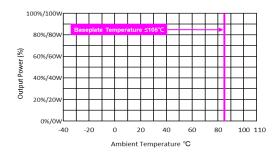

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S12 $\,$

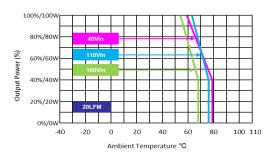

Efficiency Versus Output Current

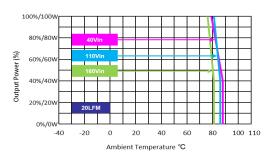

Efficiency Versus Input Voltage Full Load

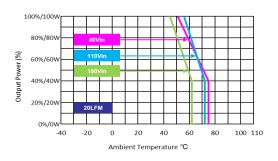

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

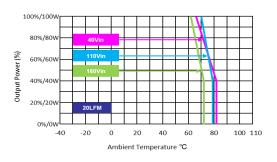

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \, ; Full \, Load$

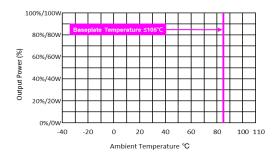

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S12 (continued)

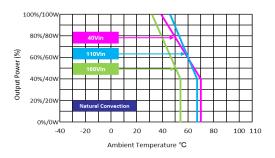


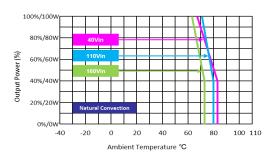
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

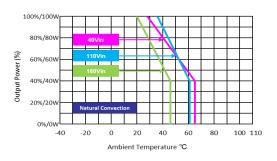


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

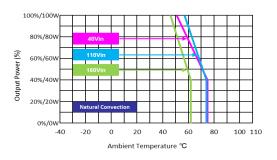

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

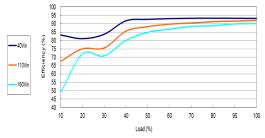

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S12 (continued)

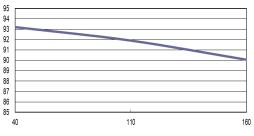


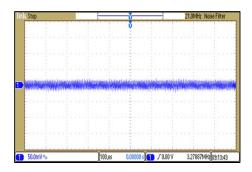
Derating Output Power Versus Ambient Temperature and Airflow V_{in=Vin pom}

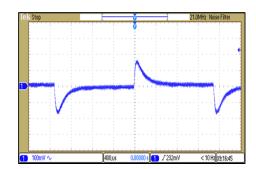


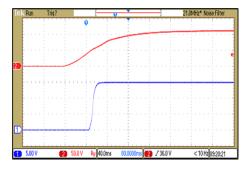
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

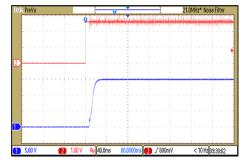

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

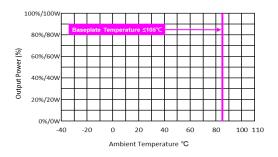

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S15 $\,$

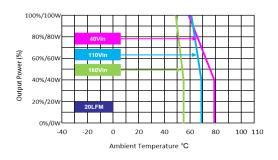

Efficiency Versus Output Current

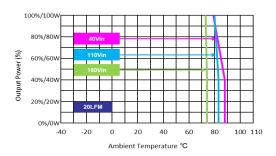

Efficiency Versus Input Voltage Full Load

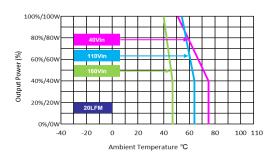

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

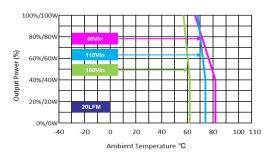

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \, ; Full \, Load$

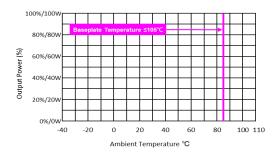

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S15 (continued)

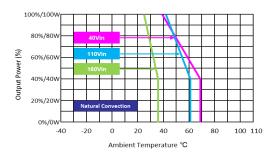


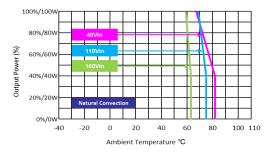
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

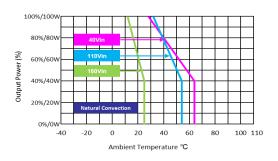


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

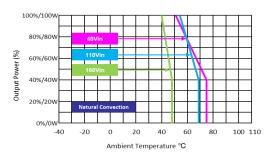

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

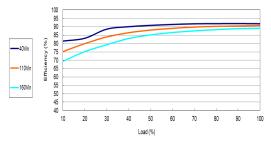

All test conditions are at 25°C $\,$ The figures are identical for MRZI100-110S15 (continued)

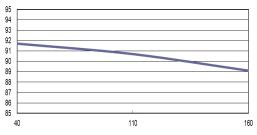


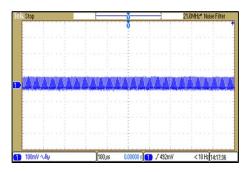
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

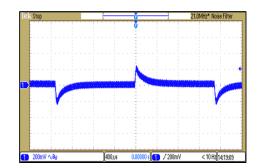


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

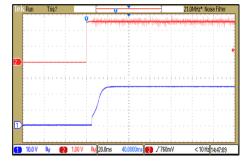

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

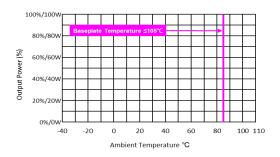

All test conditions are at 25°C The figures are identical for MRZI100-110S24

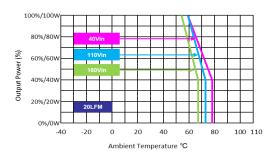

Efficiency Versus Output Current

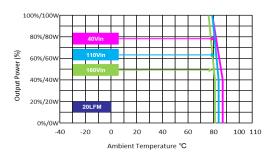

Efficiency Versus Input Voltage Full Load

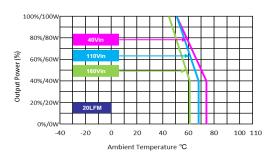

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

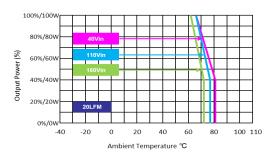

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

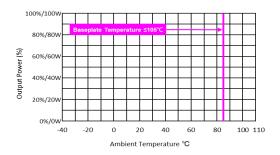

All test conditions are at 25°C The figures are identical for MRZI100-110S24 (continued)

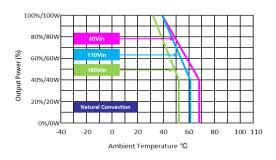


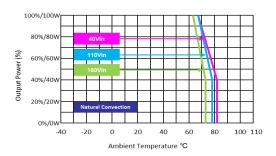
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

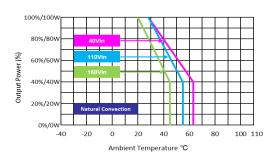


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

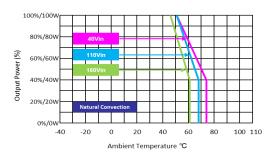

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

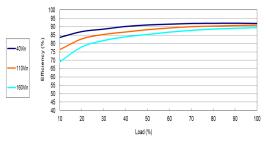

All test conditions are at 25°C The figures are identical for MRZI100-110S24 (continued)

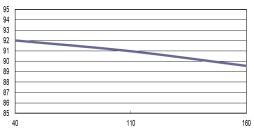


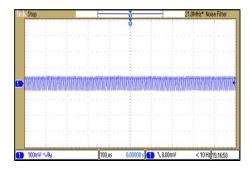
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

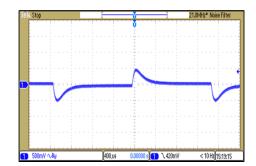


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

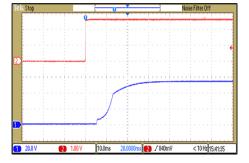

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

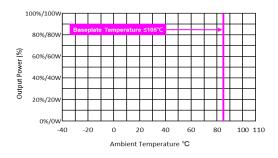

All test conditions are at 25° C The figures are identical for MRZI100-110S54

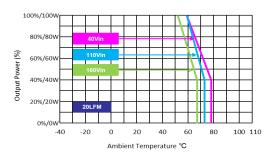

Efficiency Versus Output Current

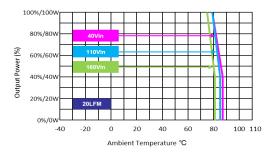
Efficiency Versus Input Voltage Full Load

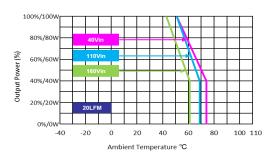

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

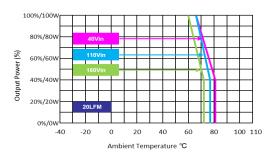

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \, ; Full \, Load$

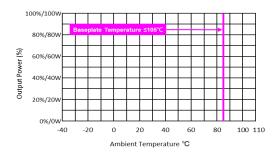

All test conditions are at 25 $^{\circ}$ C The figures are identical for MRZI100-110S54 (continued)

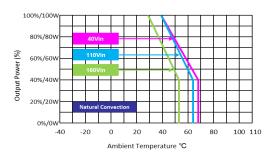


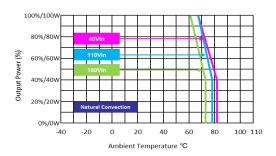
Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

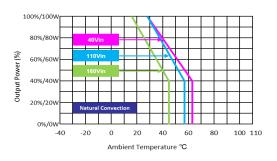


Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

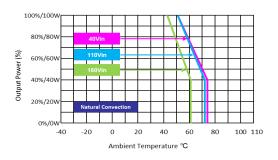

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)


All test conditions are at 25°C The figures are identical for MRZI100-110S54 (continued)



Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$



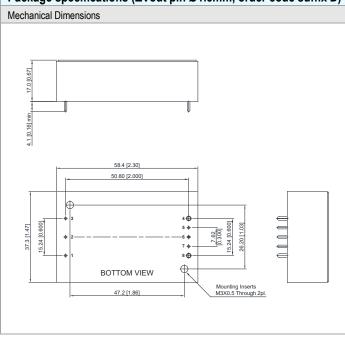
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

Package specifications (±Vout pin Ø2.0mm) Mechanical Dimensions | Section | Section

Pin Conne	Pin Connections									
Pin	Function	Diameter mm (inches)								
1	+Vin	Ø 1.0 [0.04]								
2	Remote On/Off	Ø 1.0 [0.04]								
3	-Vin	Ø 1.0 [0.04]								
4	-Vout	Ø 2.0 [0.08]								
5	* -Sense	Ø 1.0 [0.04]								
6	Trim	Ø 1.0 [0.04]								
7	* +Sense	Ø 1.0 [0.04]								
8	+Vout	Ø 2.0 [0.08]								


- * If remote sense not used the +sense should be connected to +output and -sense should be connected to -output

 Maximum output deviation is 10% inclusive of trim
- > All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

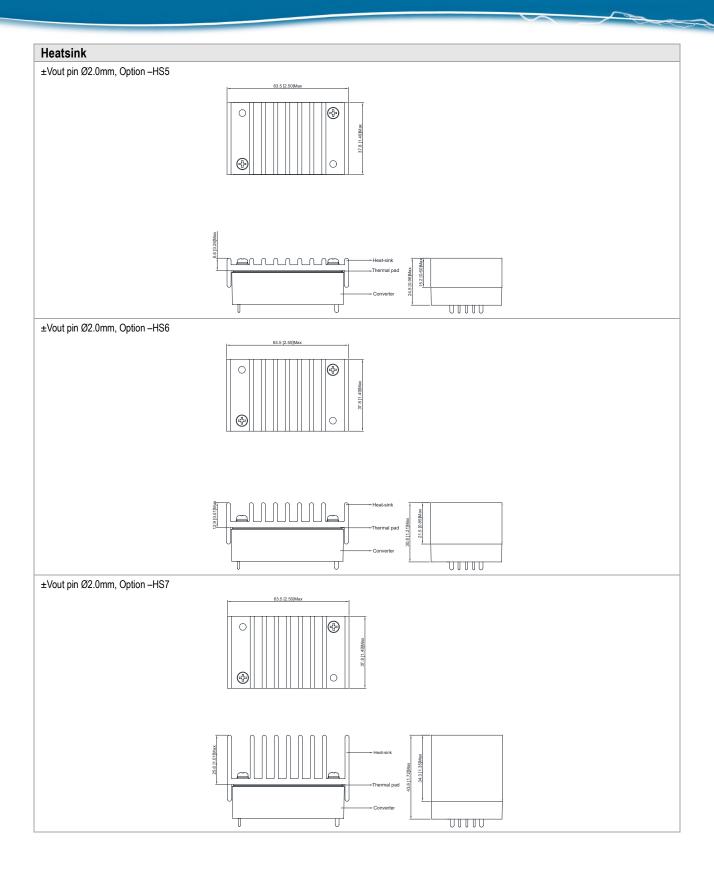
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Package specifications (±Vout pin Ø1.5mm, order code suffix D)

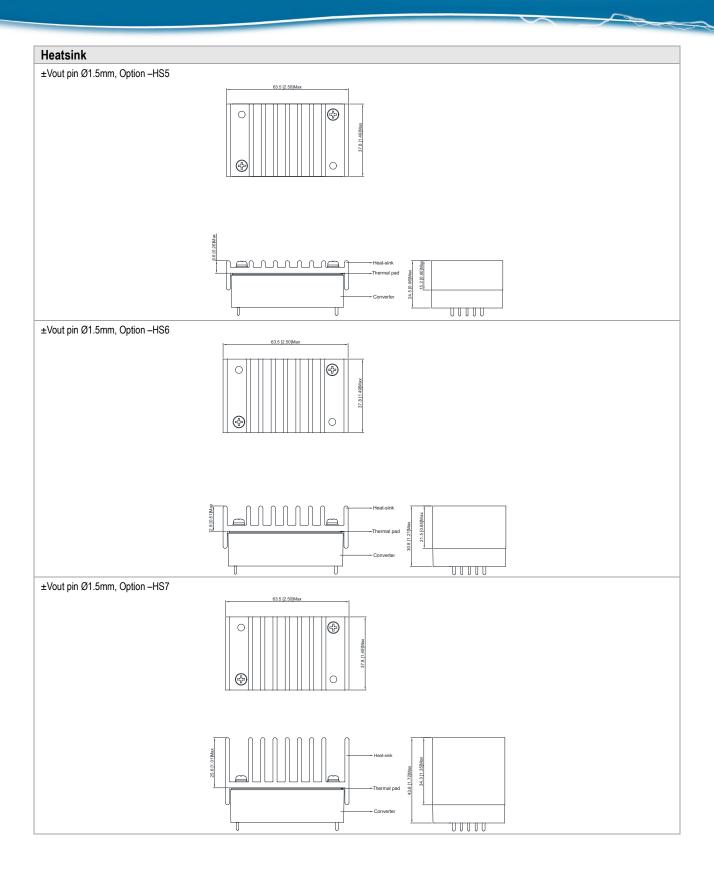
Pin Conne	Pin Connections									
Pin	Function	Diameter mm (inches)								
1	+Vin	Ø 1.0 [0.04]								
2	Remote On/Off	Ø 1.0 [0.04]								
3	-Vin	Ø 1.0 [0.04]								
4	-Vout	Ø 1.5 [0.06]								
5	* -Sense	Ø 1.0 [0.04]								
6	Trim	Ø 1.0 [0.04]								
7	* +Sense	Ø 1.0 [0.04]								
8	+Vout	Ø 1.5 [0.06]								

- * If remote sense not used the +sense should be connected to +output and -sense should be connected to -output Maximum output deviation is 10% inclusive of trim
- ➤ All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

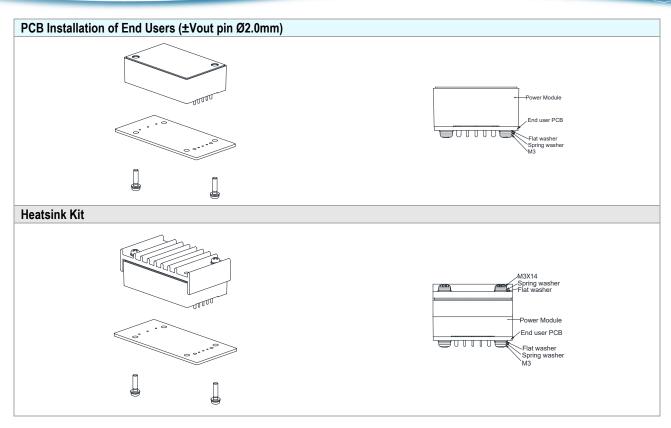
 $X.XX\pm0.25 (X.XXX\pm0.01)$

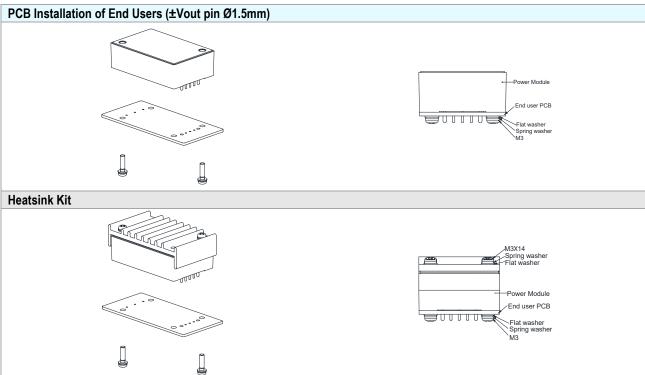

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

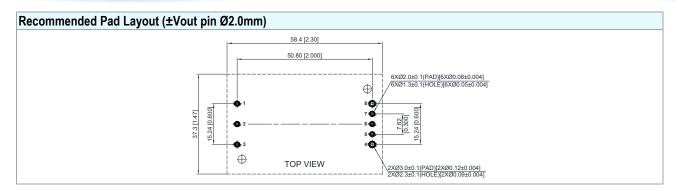
Physical Characteristics

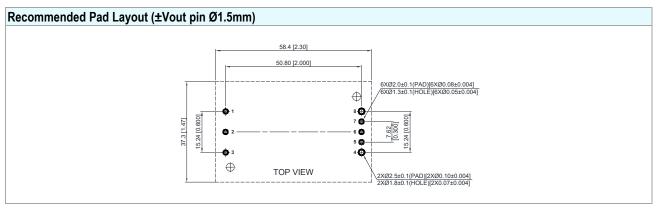

Case Size	:	58.4x37.3x17.0 mm (2.30x1.47x0.67 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Top Side Base Material	:	Aluminum Plate
Pin Material	:	Copper
Potting Material	:	Silicone (UL94-V0)
Weight	:	107g

Date:2025-04-18 Rev:13

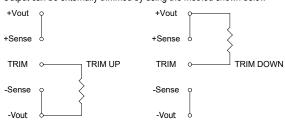








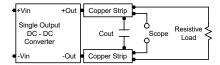
- 1. Please evaluates mechanical stress (vibration, shock, bump) during field applications.
- 2. It has to equip with installation kit if escess the guaranteed specifications, please contacts MINMAX for detail information.
- 3. Applied torque per screw 9 kgf.cm min.



www.minmaxpower.com

External Output Trimming

Output can be externally trimmed by using the method shown below


	MRZI100-110S05		MRZI100-110S05 MRZI100-110S12			MRZI100-110S15		MRZI100	-110S24	MRZI100-110S54	
Trim Range	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	
1	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14	1,882.57	560.73	
2	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02	877.94	230.36	
3	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31	543.06	120.24	
4	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46	375.62	65.18	
5	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55	275.15	32.15	
6	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61	208.18		
7	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79	160.34		
8	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18	124.46		
9	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70	96.55		
10	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72	74.23		
11									55.96		
12									40.74		
13									27.86		
14									16.82		
15									7.25		

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a $22\mu\text{F}$ polymer capacitor for 5V, 12V, 15V output models and a $33\mu\text{F}$ polymer capacitor for 24V output model and a $1\mu\text{F}$ ceramic capacitor for 54V output model. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

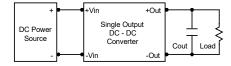
Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 2) during a logic low is -500µA.

Negative logic remote on/off turns the module on during a logic low voltage on the remote on/off pin, and off during a logic high. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum source current at the on/off terminal (Pin 2) during a logic high is 500µA.

Overload Protection

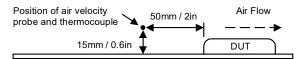

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.

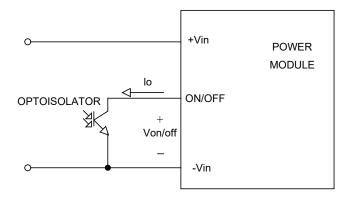


Maximum Capacitive Load

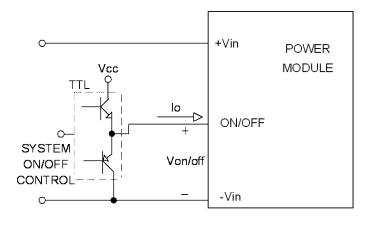
The MRZI100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the baseplate temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

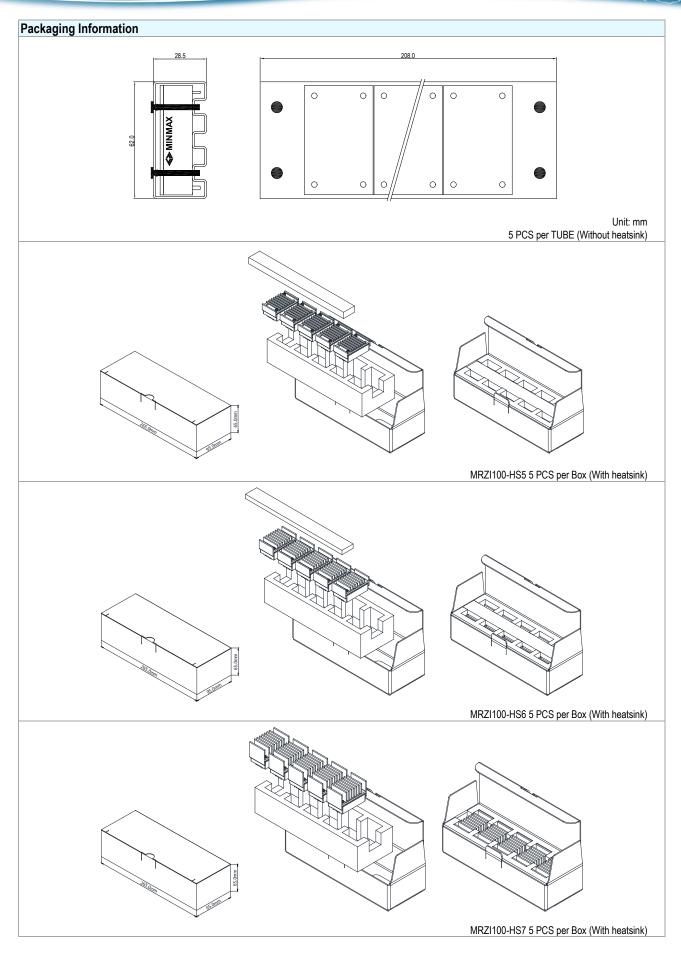


Model	D1	C1, C2
MRZI100 Series	IN5408	470μF/200V CHEMI-CON KXJ Series


Remote On/Off Implementation

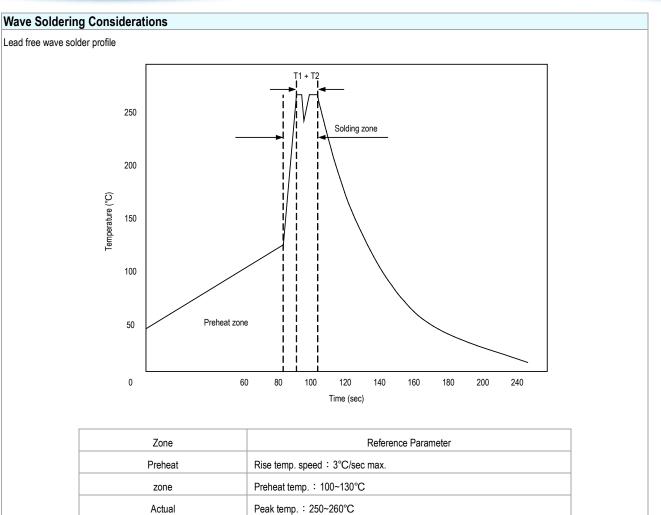
The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

The negative logic remote ON/OFF control circuit is included. Turns the module ON during logic Low on the ON/Off pin and turns OFF during logic High. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please short circuit between on/off pin and -Vin pin to turn the module on.



Isolated-Closure Remote ON/OFF

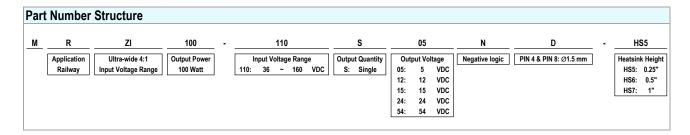
Level Control Using TTL Output



Date:2025-04-18 Rev:13

MRZI100 Series - EC Notes 27

Peak time(T1+T2): 4~6 sec


Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag Hand Welding: Soldering iron: Power 60W

heating

Welding Time: 2~4 sec Temp.: 380~400°C

MTBF and Reliability

The MTBF of MRZI100 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

MTBF	Unit
605,102	
721,451	
646,084	Hours
692,939	
773,597	
	721,451 646,084 692,939