

FEATURES

- Reinforced Insulation rated for 300VAC Working Voltage
- Ultra high I/O–isolation 8000VDC
- Low Ripple and Noise
- Low Leakage Current
- Low Isolation Capacitance
- Operating Temp. Range -40°C to +85°C
- 3 Years Product Warranty

VEAR COMPLiant

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current		Input Current		Reflected Ripple	Max. Capacitive Load	Efficiency (typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MIR401	5	5	300	0	400	50	30	470	75
MIR403	(4.5 ~ 5.5)	15	100	0	400	50	30	470	75

Input Specifications

Parameter	Min.	Тур.	Max.	Unit
Input Surge Voltage (1 sec. max.)	-0.7		7	VDC
Start-Up Voltage	4.5	5	5.5	VDC
Short Circuit Input Power			1000	mW
Input Filter		LC I	Filter	
Internal Power Dissipation			1000	mW

Output Specifications

Parameter	Condit	Conditions		Тур.	Max.	Unit	
Output Voltage Accuracy				±2.0	±4.0	%	
Output Voltage Balance	Dual Output, Ba	Dual Output, Balanced Loads		±0.5	±2.0	%	
Line Regulation	For Vin Cha	For Vin Change of 1%		±1.2	±1.5	%	
Lood Develotion	1- 000/ 1- 4000/	5V Output		±7.0	±10	%	
Load Regulation	10=20% to 100%	15V Output		±4.0	±6.0	%	
Ripple & Noise (20MHz)				30	40	mV _{P-P}	
Ripple & Noise (20MHz)	Over Line, Lo	ad & Temp.			50	mV _{P-P}	
Ripple & Noise (20MHz)				15	mV rms		
Temperature Coefficient				±0.01	±0.02	%/°C	
Short Circuit Protection		Continuous					

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage (rated)	60 Seconds	8000			VDC
Leakage Current	240VAC, 60Hz			2	μA
I/O Isolation Resistance	500 VDC	10			GΩ
I/O Isolation Capacitance	100kHz, 1V		10	15	pF
Switching Frequency		50		100	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000			Hours

Input Fuse

5V Input Models	
1000mA Slow-Blow Type	

E-mail:sales@minmax.com.tw Tel:886-6-2923150

MIR400 SERIES

DC-DC CONVERTER 1.5W, DIP-Package

Environmental Specifications

Parameter	Conditions	Min. Max.		Unit
Operating Temperature Range (without Derating)	Ambient	-40	+85	°C
Case Temperature			+95	°C
Storage Temperature Range		-55	+125	°C
Humidity (non condensing)			95	% rel. H
Cooling	Free-Air convection			
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Ripple & Noise measurement bandwidth is 0-20 MHz.
- 3 All DC-DC converters should be externally fused at the front end for protection.
- 4 Operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications subject to change without notice.

Package Specifications

Pin Connec	Pin Connections					
Pin	Single Output	Dual Output				
1	+Vin	+Vin				
2	+Vin	+Vin				
11	+Vout	+Vout				
12	+Vout	+Vout				
13	-Vout	Common				
14	-Vout	Common				
15	No Pin	-Vout				
23	-Vin	-Vin				
24	-Vin	-Vin				

► All dimensions in mm (inches)

- ► Tolerance: X.X±0.25 (X.XX±0.01)
 - X.XX±0.13 (X.XXX±0.005)

Physical Characteristics

Case Size	:	31.8x20.3x10.2 mm (1.25x0.80x0.40 inches)
Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Weight	:	12g

E-mail:sales@minmax.com.tw Tel:886-6-2923150

www.minmax.com.tw

MIR400 SERIES

DC-DC CONVERTER 1.5W, DIP-Package

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Maximum Capacitive Load

The MIR400 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 470µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

Output Ripple Reduction

A good quality low ESR 1.5µF capacitor connected as colse as possible to the load is recommended.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

