

SINCE 1990 0-

PREFACE

MEDICAL SAFETY POWER SOLUTIONS ENGINEERED BY MINMAX

MINMAX has an extensive history and experience with the design of medical safety DC-DC converters and AC-DC power supplies for demanding applications in both medical and healthcare instrumentation that requires medical safety and a reinforced insulation system. MINMAX offers a large standard range of high-isolation and reinforced insulated medical safety DC-DC converters with a power ranging from 1 to 20 W and AC-DC power supplies with a power ranging from 24 to 60 W.

Given the requirements for medical/healthcare applications for I/O isolation, MINMAX Medical Safety Power Solutions are rated from 3000 to 5000 VAC and possess reinforced insulation and a low leakage current for operator protection (2xMOOP) or patient protection (2xMOPP).

All medical safety products meet the latest medical safety standards (ANSI/AAMI ES 60601-1 and IEC/EN 60601-1 3rd edition) and are approved for nominal working voltages of 250 Vrms or higher.

MINMAX medical safety DC-DC converters and AC-DC power supplies offer cost-effective power solutions for demanding medical and healthcare applications in dental chairs, oral care equipment, infusion pumps, medical assist devices, medical oxygen monitors, medical carts, CT scanning, ultrasound, and many pieces of medical auxiliary equipment.

CONTENTS

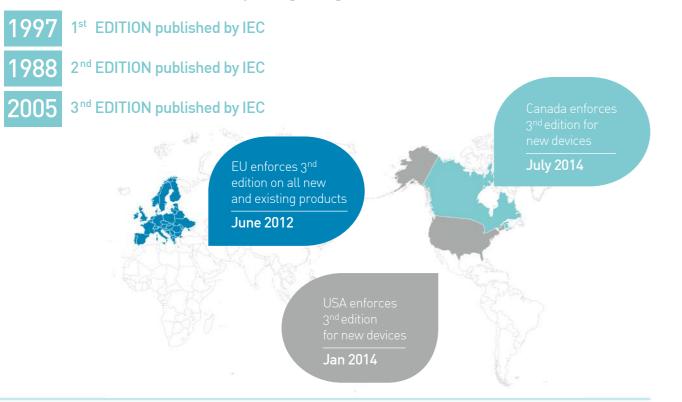
MEDICAL SAFETY INTRODUCTION AND APPLICATIONS

History of the Editions of Medical Safety Standard IEC Changes from the 2nd Edition to the 3rd Edition of the Isolation Voltage and Safety Distance in the 3rd Editio Leakage Current in the 3rd Edition of the IEC 60601-1 Insulation Type Structure of the Medical Insulation System — Medical EMC Standards Cost vs. Risks to Safety HIGHLIGHTED PERFORMANCE OF MEDICAL SA

MINMAX MEDICAL SAFETY POWER SOLUTIONS

Successful Application Medical Safety Products Overview Medical Safety 1-20W DC-DC Converters Medical Safety 24-60W AC-DC Power Supplies

60601	05
e IEC 60601-1 Standard	05-06
on of the IEC 60601-1 Standard	06-07
Standard	07
	08
	08-09
	09-10
	10
AFETY PRODUCTS	11-16

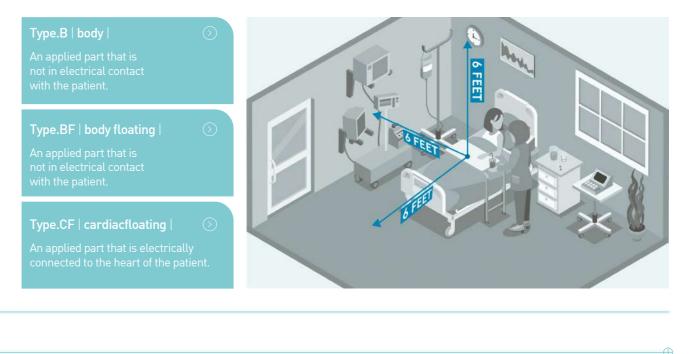

17
18
19-24
25

MDEICAL SAFETY INTRODUCTION AND APPLICATIONS

HISTORY OF THE EDITIONS OF MEDICAL SAFETY STANDARD IEC 60601

- Medical Safety Standard IEC 60601 was first published in 1977; the internationally accepted and approved IEC 60601 standard is the fundamental document that addresses many risks and has been developed to help alleviate safety issues associated with electrical medical and healthcare equipment.
- The standard consists of four distinct parts: the base standard (60601-1), collateral standards (60601-1-x), particular standards (60601-2-x), and performance standards (60601-3-x).
- The base standard, IEC 60601-1, has been adopted in most major countries as a national standard.
- The 3rd edition of the approved IEC 60601-1 medical safety standard was first published by the IEC in 2005 (IEC 60601:2005). The IEC 60601 standard was adopted by the European Union in 2006 and published as EN 60601-1:2006. The 3rd edition standard was also published in 2006 by the USA but is different from the 2nd edition published by UL. The 3rd edition was published by the American Association for Medical Instrumentation (AAMI) and published as ANSI/AAMI ES 60601:2006. Canada published this medical safety standard in 2008 as CAN/ CSA 60601:2008.

The 3rd edition of Medical Safety Standard IEC 60601 went into effect at different times depending on region.



HISTORY OF THE EDITIONS OF MEDICAL SAFETY STANDARD IEC 60601

- reprieve, setting the updated transition date to December 31, 2013, and the effective date for the released 3rd edition was January 1, 2014. Unlike the EU, the FDA only requires that new products after this date need to be certified to the ANSI/AAMI ES 60601-1 standard; existing products do not. products after this date need to satisfy the 3rd edition.
- and also tested against the 2nd edition.also tested against the 2nd edition.

CHANGES FROM THE 2nd EDITION TO THE 3rd EDITION OF THE IEC 60601-1 STANDARD

- and healthcare equipment was within the "patient vicinity," defined as a 6-ft. radius around the patient.
- There were three categories of increasing severity:also tested against the 2 nd edition.

• In Europe, the 2nd edition of the IEC 60601-1 standard was withdrawn; all products including both new products introduced to the market and products already on sale need to be certified under the 3rd edition of the EN 60601-1 standard before the cessation date. The original cessation date for the 2nd edition in the United States is July 1, 2013. The FDA announced an extension to give US medical device designers a slight

In Canada, the original cessation date for the 2nd edition was delayed, as in the USA, with an updated transition date of June 30, 2014. The effective date for the released 3rd edition was July 1, 2014. However, only new

• All MINMAX medical safety AC-DC power supplies and medical safety DC-DC converters have been certified to the approved 3rd edition standard (with twice the means of protection for the majority of power supplies)

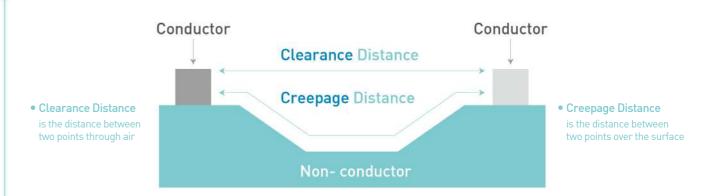
• In the 2nd edition of the IEC 60601-1 standard, the guidelines need to be applied when the electrical medical

CHANGES FROM THE 2nd EDITION TO THE 3rd **EDITION OF THE IEC 60601-1 STANDARD**

- The 2nd edition of the IEC 60601-1 standard only addresses the basic safety issues for protection from any electrical, mechanical, radiation, and thermal hazards. However, it did not require devices to remain functional; a fail-safe was adequate and did not take the essential performance of the device into account in a pass/fail result test. Therefore, the 3rd edition of the IEC 60601-1 standard introduces specifications for "essential performance" that require medical/healthcare equipment to continue functioning throughout the test process.
- As medical safety AC-DC power supplies and medical safety DC-DC converters have significantly played a crucial role in certified electrical medical and healthcare equipment, the 3rd edition of the IEC 60601-1 standard introduces new concepts such as the essential performance of equipment and distinguishes protecting the equipment's operator and the patient by Means of Operator Protection (MOOP) and Means of Patient Protection (MOPP) classification in terms of the separation safety distance, insulation schemes, and dielectric strength requirements.
- The classification determined the mandated or allowed types of levels of isolation, insulation, creepage, air clearance, and leakage current that operators and patients may come into contact with.

ISOLATION VOLTAGE AND SAFETY DISTANCE IN THE 3rd EDITION OF THE IEC 60601-1 STANDARD

• The 3rd edition of the approved IEC 60601-1 safety standard specified that the safety distance for the minimum creepage, air clearance, and isolation voltage must be met in order to avoid risks and to ensure freedom from dangerous energy shocks due to any electrical shocks and excess energy hazards, transient voltage spikes, insulation breakdown of the power architecture, mechanical damage, ignition, fires, shorts developing between PCB tracks and across air gaps, arcing, and ground loops, which comply with the limited leakage current during normal and single-fault conditions.


The level requirement for the isolation voltage depends on the insulation type, the working voltage, and the degree of pollution, and the insulation barriers must have undergone a high-voltage test.

From our standpoint at MINMAX, we believe that the power supplies for medical and healthcare equipment should provide the highest degree of protection; therefore, our medical safety DC-DC converters and AC-DC power supplies have 2xM0PP/2xM00P from the primary side to the secondary side (mains AC to low-voltage DC). This gives medical/healthcare equipment designers flexibility and assurance that there are primary and secondary reinforced insulation barriers in the medical power architecture to ensure long-term safety.

Insulation		MOOP		МОРР			
Insulation	Air Clearance	Creepage Distance	Test Voltage	Air Clearance	Creepage Distance	Test Voltage	
Basic 1 x MOP	2.0 mm	3.2 mm	1500 VAC	2.5 mm	4.0 mm	1500 VAC	
Double or Reinforced 2 x MOP	4.0 mm	6.4 mm	3000 VAC	5.0 mm	8.0 mm	4000 VAC	

| Insulation test voltages based on 250 VAC working voltage | MOP = Means of protection | MOOP = Means of operation protection | | MOPP = Means of patient protection |

ISOLATION VOLTAGE AND SAFETY DISTANCE IN THE 3rd EDITION OF THE IEC 60601-1 STANDARD

LEAKAGE CURRENT IN THE 3rd EDITION OF THE IEC 60601-1 STANDARD

- Whether the product is considered MOOP or MOPP, the leakage-current requirements must be met.
- A further change between the 2nd and 3rd editions is related to the Earth leakage-current requirements.
- The leakage current needs to comply with a limit value to avoid risks and ensure freedom from dangerous energy ground loops that the operator or patient may come into direct contact during normal and single-fault conditions.
- medical/healthcare equipment. The measured leakage-current values should comply with the acceptable limits.

Earth leakage current	Current flowing in the earth conductor.										
Enclosure leakage current	Current flowing	Current flowing to earth via the patient from the enclosure.									
Patient leakage current	Current flowing	to earth via the	patient from an a	applied part.							
Patient auxiliary current	Current flowing	Current flowing between two applied parts.									
	TYPE	В	TYPE	BF	TYPE CF						
Leakage Current	NC	SFC	NC	SFC	NC	SFC					
Earth leakage current general	500 µA*	1000 µA	500 µA*a	1000 µA*	500 µA*	1000 µA					
Enclosure leakage current	100 µA	500µA*	100µA	500µA*	100µA	500µA*					
Patient leakage current AC	100 µA	500µA	100µA	500µA	10µA	50µA					
Patient auxiliary current DC	10 µA	50µA	10µA	50µA	10µA	50µA					

| NC = Normal Conditions|

| SFC = Single Fault Conditions|

 \mid *The maximum Earth and enclosure leakage current for patient care equipment in the US is 300 $\mu A.\mid$

shocks due to any electrical shock and excess energy hazards, transient voltage spikes, insulation breakdown of the power architecture, mechanical damage, ignition, fire, shorts developing between PCB tracks, air gaps, arcing, and

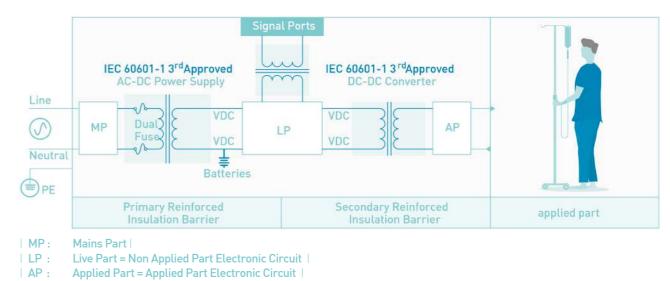
• Leakage-current tests are designed to simulate a human body coming into contact with different parts of the

(1) "Enclosure Leakage Current" changed to "Touch Leakage Current" in the 3rd edition of the IEC 60601-1 standard

INSULATION TYPE

• The five different types of insulation grades are listed below.

Functional Insulation	Insulation that is necessary only for the correct functioning of the equipment and does not provide any protection against electric shock.
Basic Insulation	Insulation applied to live parts to provide protection against electric shock.
Supplementary Insulation	Independent insulation applied in addition to basic insulation in order to provide protection against electric shock in the event of a failure of basic insulation.
Double Insulation	Insulation comprising both basic insulation and supplementary insulation.
Reinforced Insulation	Single insulation system applied to live parts which provide a degree of protection against electric shock equivalent to double insulation.


STRUCTURE OF THE MEDICAL INSULATION SYSTEM

- The figure below shows the insulation system structure and two insulation barriers that provide two Means of Protection (MOP) that must be present within medical/healthcare systems.
- Two insulation barriers are required to ensure that the applied part, which includes both patients and operators, is isolated and protected from dangerous energy shocks due to any electrical shocks and excess energy hazards, transient voltage spikes, insulation breakdown of the power architecture, mechanical damage, ignition, fire, shorts developing between PCB tracks, air gaps, arcing, and ground loops and complies with the limited leakage current during normal and single-fault conditions.
- Within the electrical safety area, medical safety approval requires equipment to implement two Means of Protection (MOP) such that if a failure occurs within one area, a second mechanism safeguards the operator and/or patient against dangerous energy shocks from any electrical shocks and excess energy hazards, transient voltage spikes, and insulation breakdown of the power architecture.

MINMAX medical safety AC-DC power supplies and medical safety DC-DC converters have been approved to the new 3rd edition of the IEC 60601-1 standard with a reinforced insulation level. Further, all medical safety AC-DC power supplies provide 2xMOPP and are suitable as the primary reinforced insulation barrier. All medical safety DC-DC converters provide 2xMOPP or 2xMOOP and are suitable as the secondary reinforced insulation barrier of the insulation system structure to ensure the long-term safety of operators/patients.

STRUCTURE OF THE MEDICAL INSULATION SYSTEM

MEDICAL EMC STANDARDS

Susceptibility).

• EMC Test Level of Medical Safety DC-DC Converters

	Phenomenon	EN 60601-1 Referer Reference Clause Standar		MINMAX Test Level of Medical DC-DC Converters				
					0.15 – 0.5MHz	Quasi-peak 79 dBuV	Average 66 dBuV	
	Conducted Emission	EN 55011	EN 55011	Group 1 Class A	0.5 – 5.0MHz	Quasi-peak 73 dBuV	Average 60 dBuV	
EMI					5.0 – 30MHz	Quasi-peak 73 dBuV	Average 60 dBuV	
	D. F. LE C.			Group 1	30 – 230MHz	40 dBuV/m		
	Radiated Emission	EN 55011	EN 55011	Class A	230 – 1000MHz 47 dBuV/m			
	ESD Test	EN 60601-1-2	IEC 61000-4-2	Air Disch	arge : ±15KVDC	Contact Discha	rge ±8KVDC	
	Radiated Immunity (RS)	EN 60601-1-2	IEC 61000-4-3	80 to 270	0MHz : 10V/m 38	35 to 6000MHz	7-28 V/m	
	Electrical Fast Transient (EFT)	EN 60601-1-2	IEC 61000-4-4	L1, L2, L1	I+L2 : ±2KVDC			
EMS	Surge Immunity Test	EN 60601-1-2	IEC 61000-4-5	L1 to L2	: ±2KVDC			
	Conducted Immunity (CS)	EN 60601-1-2	IEC 61000-4-6	0.15 to 80	MHz : 10Vrms I	SM Frequency :	6 Vrms	
	Power Frequency Magnetic Field (PFMF)	EN 60601-1-2	IEC 61000-4-8	X, Y, Z axis : 30 A/m				

• All MINMAX medical safety AC-DC power supplies and DC-DC converters undergo 4th edition medical EMC (Emission + Immunity) testing of LIFE-SUPPORTING ME EQUIPMENT to help us provide as much information as possible during the design-in process to ensure that medical/healthcare equipment comply with EN 50155: 2009+AI for EMI (Electromagnetic Interference) and EN 60601-1-2: 2015 for EMS (Electromagnetic

MEDICAL EMC STANDARDS

• EMC Test Level of Medical Safety AC-DC Power Supplies

	Phenomenon	EN 60601-1 Reference Clause	Reference Standard	MINMAX Test Level of Medical DC-DC Converters						
					0.15 – 0.5MHz	Quasi-peak 66-56 dBuV	Average 56-46 dBuV			
	Conducted Emission	EN 55011	EN 55011	Group 1 Class A	0.5 – 5.0MHz	Quasi-peak 56 dBuV	Average 46 dBuV			
EMI					5.0 – 30MHz	Quasi-peak 60 dBuV	Average 50 dBuV			
	Radiated Emission	EN 55011	EN 55011	Group 1	30 – 230MHz					
	Radialed Emission	EN SSUTT	EN 55011	Class A	230 – 1000MHz	37 dBuV/m				
	ESD Test	EN 60601-1-2	IEC 61000-4-2	Air Discharge : ±15KVDC Contact Discharge ±8K						
	Radiated Immunity (RS)	EN 60601-1-2	IEC 61000-4-3	80 to 2700MHz : 10V/m 385 to 6000MHz 9-28 V/n						
	Electrical Fast Transient (EFT)	EN 60601-1-2	IEC 61000-4-4	L, N, L+N : ±2KVDC						
	Surge Immunity Test	EN 60601-1-2	IEC 61000-4-5	L to N : :	±2KVDC					
	Conducted Immunity (CS)	EN 60601-1-2	IEC 61000-4-6	0.15 to 80	MHz:10Vrms I	SM Frequency :	6 Vrms			
EMS	Power Frequency Magnetic Field (PFMF)	EN 60601-1-2	IEC 61000-4-8	X, Y, Z ax	is : 30 A/m					
	Voltage Dips	EN (0/01-1-2	IFC 61000-4-11	Dips : 100% Reduction for 0.5 cycle at 50 Hz 100% Reduction for 1 cycle at 50 Hz						
	Short Interruptions	EN 60601-1-2	IEC 61000-4-11	30% Reduction for 25/30 cycle at 50/60 Hz Interruptions : 100% Reduction for 250/300 cycle at 50/60 Hz						

COST VS. RISKS TO SAFETY

- Although the 3rd edition of the IEC 60601-1 standard offers medical/healthcare equipment manufacturers more options related to the choice of power supply, the upcoming question of risk vs. cost must be considered, i.e., a cheaper power supply with a lower performance to save a few dollars versus a power supply with higher specifications and safety certification that might cost more but reduce the risk as much as possible. After all, if you get it wrong in medical device design, it can limit your market, compromise your brand, and severely delay regulatory approval or worse.
- As a result, the specifications of medical safety power supplies that are approved at the IEC/EN 60601-1 standard and comply with Means of Protection (MOP) is preferred for medical/healthcare equipment manufacturers.

Fully Vacuum Encapsulated to Save Your System

from acomprehensive protection capabilities.

MEDICAL SAFETY **POWER SOLUTION GUIDE | 2024**

• For the electromagnetic susceptibility and environmental physical stress interference which are protected

Reinforced Insulation & 5KVAC Isolation for System Safety

 The 5KVAC I/O isolation with reinforced insulation and vacuum encapsulated creates a solid electrical barrier which to protect sensitive circuit load from noise, electromagnetic disturbances, power bus fluctuation, avoid the risk and ensure freedom dangerous energy shock from any electric shock and excess energy hazards, transient voltage spike, insulation breakdown of power architecture, mechanical damage, ignition, fire and short developing between PCB tracks, air gaps, arcing and ground loop that provide safety on long-term operation of medical/ healthcare equipment.

Please refer to the "Isolation Voltage and Safety Distance in the 3rd Edition of the IEC 60601-1 Standard & Leakage Current in the 3rd Edition of the IEC 60601-1 Standard & Insulation Type" on Page 04 & 05 & 06 for more information.

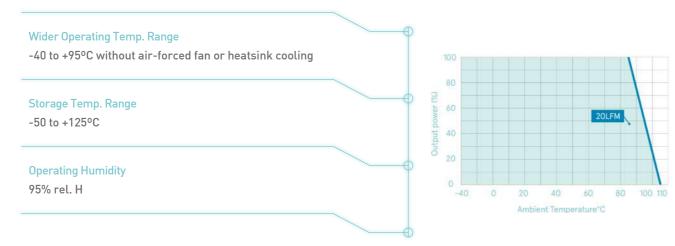
* Example : MIW06-24S12M

Wider Operating Ambient Temperature Range

• Wider operating temp. range by latest thermal management technology and fully vacuum encapsulated.

8mm Creepage &

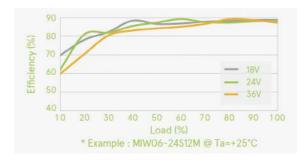
Primary


Low Leakage Current < 2uA

Clearance with 2xMOPP Level

Isolation 5KVAC/60sec with Reinforced Insulation

Low I/O Isolation Capacitance 40pF max.


Secondary

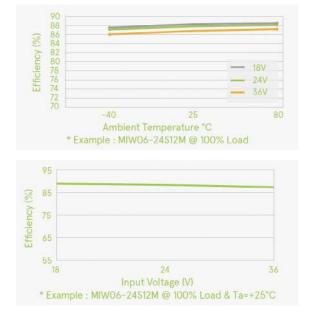
* Example : MIW06-24S12M

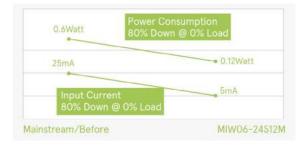
• High efficiency for whole output load, input line & ambient temp. range by latest green design technology helps to energy saving, thermal management, minimize the temp. rise and size miniaturization.

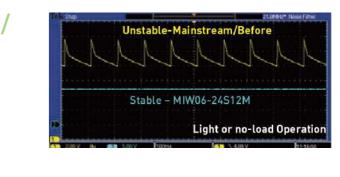
ECO Technology

Green Design for Energy Saving, **Minimize Temperature Rise**

• Ultra low no-load power consumption by latest green design technology helps to improve and minimize the temp. rise (avoid thermal problem), energy saving and prolong the battery life.


Very Low No Load Input Current 5mA @ 24Vin Very Low No Load Power Consumption 0.12Watt @ 24Vin

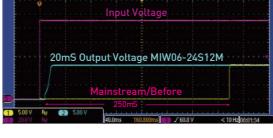

Green Design for No Min. Load / **Dummy Load Requirement**

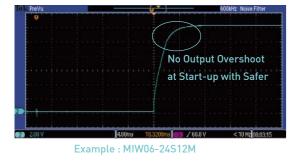

• With high stability feedback loop design, the MINMAX medical safety power solutions may not oscillate in no-load or light-load condition.

MEDICAL SAFETY **POWER SOLUTION GUIDE | 2024**

Green Design for Higher Full Range Efficiency

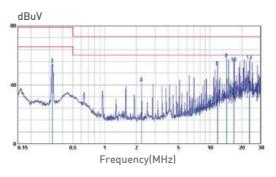
Power Your System Precisely


• Setting Accuracy ±1% Vom | Line Regulation ±0.5% | Load Regulation ±0.5% | High Transient Response | Low Temperature Coefficient |

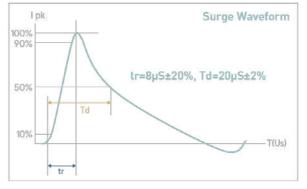

- The output voltage will still keep with excellent accuracy, even though the input voltage, output current and ambient temp. of the system are unstable.
- The output voltage of mainstream products may undershoot and overshoot obviously during the load changes. MINMAX medical safety power solutions are still keep with rated output voltage preciously.

Faster Start-up Time without Overshoot

• The start-up time of MIW06M decreases from 250mS to 20mS which helps to avoid any system timing failure caused by long start-up time. Faster start-up time without overshoot ensures the safety of your system.


Superior Load Driving Capability

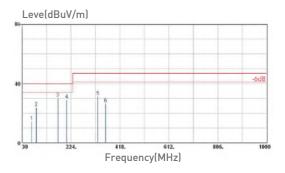
•MINMAX medical safety power solutions have superior load driving capability which can drive your system during very low voltage and even zero voltage output without start-up failure.



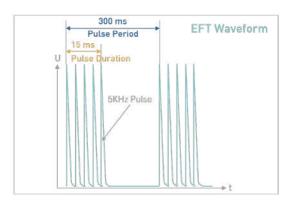
Excellent EMC Performance

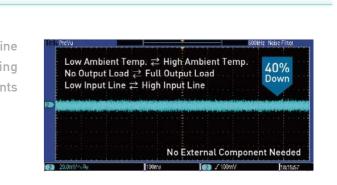
- Excellent EMI performance by upgraded noise filtering technology helps to improve overall system EMI performance on conduction and radiation emission.
- No external component needed for conducted emission meets EN 55011 Class A.

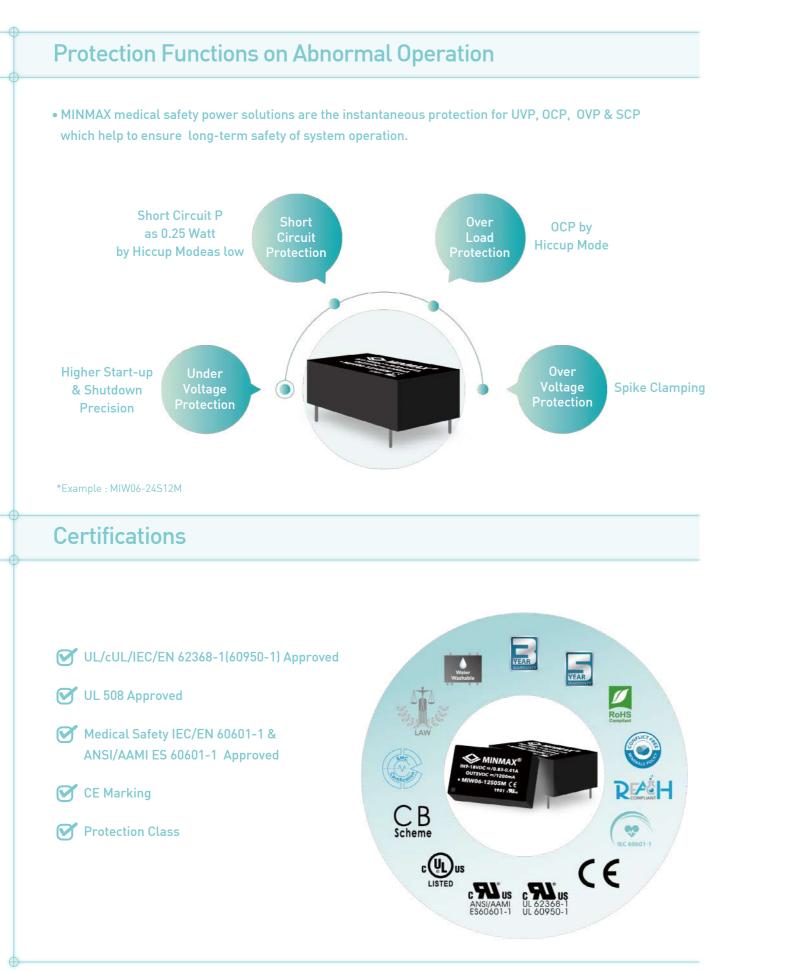
- Excellent EMS performance by upgraded noise immunity technology helps to improve overall system EMS performance on ESD, Surge, EFT, RS, CS and PFMF.
- Only one E-cap. needed for ±2KV surge immunity by IEC 61000-4-5 with criteria A.


* Please refer to the "Medical EMC Standards" on Page 09 & 10 for more information.

Lower Ripple & Noise


• Small Ripple & Noise for whole output load, input line & ambient temp. range by upgraded noise filtering technology helps to reduce the peripheral components needed and noise interference.


, I	MEDICAL SAFETY POWER SOLUTION GUIDE 2024	15


• Only few peripheral components needed for radiated emission meets EN 55011 Class B.

• Only one E-cap. needed for ±2KV EFT immunity by IEC 61000-4-4 with criteria A.

MINMAX MEDICAL SAFETY POWER SOLUTIONS

SUCCESSFUL APPLICATIONS

• Dental Equipment

• Mobile Cart Computer

• CT Scanning

Medical Panel PC

• ECG, EEG • Medical Assist System

MEDICAL SAFETY PRODUCTS OVERVIEW														
Medical	Safe	ety DC-D	C Conv	erters										
Series	Output Power	Input Voltage Range (VDC)	Output Voltage (VDC)	Isolation (VDC)	Efficiency	Operating Ambient Temp. Range ^{tti}	Output Regulation	No Min. Load	OCP	OVP	SCP	Protection Level	ANSI/AAMI ES 60601-1	IEC/EN 60601-1 3 ल
1W • SIP Pa	ckage													
MAU400	1W	4.5-5.5, 10.8-13.2	5, 12, 15, ±12, ±15	3000VAC Reinforced	75%	-25~+85°C						1xM0PP 2xM00P	•	•
MAU01M	1W	4.5-5.5, 10.8-13.2 21.6-26.4,	5, 12, 15	4000VAC Reinforced	81%	-40~+95°C					•	2xM0PP	•	•
1-2W • SMD	Packa	ge												
MSCU01M	1W	4.5-5.5, 10.8-13.2, 21.6-26.4	5, 12, 15, ±12, ±15	4000VAC Reinforced	84%	-40~+95°C					•	2xM0PP	•	•
MSHU100	2W	4.5-5.5, 10.8-13.2 21.6-26.4,	5, 12, 15, ±12, ±15	4000VAC Reinforced	75%	-25~+80°C						1xM0PP 2xM00P	•	•
2-10W • DIP	Packa	ge												
MDHU100	2W	4.5-5.5, 10.8-13.2 21.6-26.4,	5, 12, 15, ±12, ±15	4000VAC Reinforced	75%	-25~+80°C						1xM0PP 2xM00P	•	•
MIHW2000	3W	9-40, 18-80, 36-160	5, 12, ±12, ±15	4000VAC Reinforced	83%	-40~+85°C	•		•		•	1xM0PP 2xM00P	•	•
MIW03M	3.5W	4.5-9, 9-18, 18-36, 36-75	5, 5.8, 12, 15 ±12, ±15	5000VAC Reinforced	87%	-40~+96°C	۰	0	•	•	•	2xM0PP	•	•
MIW06M	6W	9-18, 18-36, 36-75	5, 12, 15, ±12, ±15	5000VAC Reinforced	89%	-40~+95°C	•	•	•	•	•	2xM0PP	•	•
MIW10M	10W	9-18, 18-36, 36-75	3.3, 5, 5.1, 12, 15, 24, ±12, ±15	5000VAC Reinforced	88%	-40~+90°C	•	•	•	•	•	2xM0PP	•	•
10-20W • 2"	×1" Pa	ckage												
MKW15M	15W	9-18, 18-36, 36-75	5, 5.1, 12, 15, 24, ±12, ±15	4200VAC Reinforced	90%	-40~+85°C	۰	•	•	•	•	2xM0PP	•	•
MKW20M	20W	9-18, 18-36, 36-75	5, 5.1, 12, 15, 24, ±12, ±15	4200VAC Reinforced	90%	-40~+80°C	•	•	•	•	•	2xM0PP	•	•
Medical	Safe	ety AC-D	C Conv	erters										
v	ower	tage e)	ltage	5	cy	ing nt nge	t ion	.oad	e			E o	AI ES	ت ح ۳

Series	Output Power	Input Voltage Range (VAC)	Output Voltage (VDC)	Isolation (VDC)	Efficiency	Operating Ambient Temp. Range	Output Regulation	No Min. Load	Package					IEC/EN 60601-1 3 rd
AJM-24	24W	85-264	5,9,12,15, 24,±12 ±15	4000VAC Reinforced	85%	-40~+80°C	٠	•	PCB Chassis DIN-Rail	•	•	2xM0PP	•	•
APM-40	40W	85-264	5,12,15, ±12±15	4000VAC Reinforced	85%	-40~+80°C	•	•	PCB Chassis DIN-Rail	•	•	2xM0PP	•	•
AYM-60	60W	85-264	5.1,12, 15,24,48	4000VAC Reinforced	85%	-40~+80°C	•	•	PCB Chassis DIN-Rail	•	•	2xM0PP	•	•

⁽¹⁾Please refer to derating curve information form datasheet

MINMAX TECHNOLOGY

Model Selection Guide

F	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency
I		5	200	66%
2		12	80	66%
3	4.5 - 5.5	15	65±	66%
ŕ ŧ	4.5 - 5.5	±5	100	66%
5		±12	±40	72%
5		±15	±35	73%
		5	200	66%
2		12	80	66%
3	10.8 - 13.2	15	65	66%
r ÷		±5	±100	66%
5		±12	±40	74%
5		±15	±35	75%

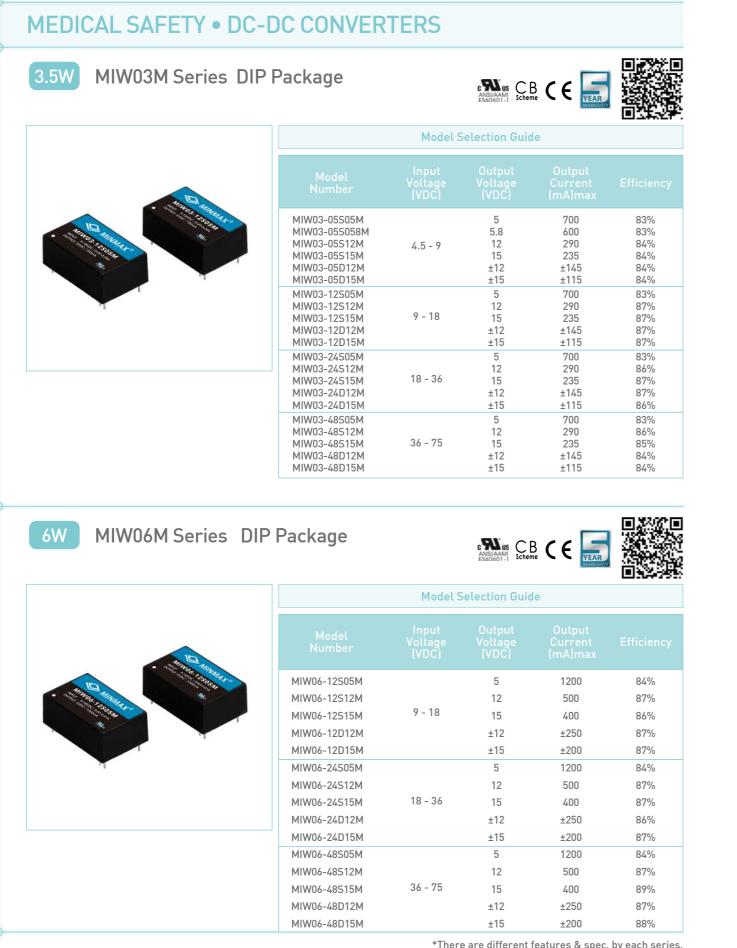
	Model S	election Guid	le	
r	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency
05M		5	200	79%
12M	4.5 - 5.5	12	84	80%
15M		15	68	81%
05M		5	200	79%
12M	10.8 - 13.2	12	84	81%
15M		15	68	79%
05M		5	200	76%
12M	21.6 - 26.4	12	84	79%
15M		15	68	79%

*There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

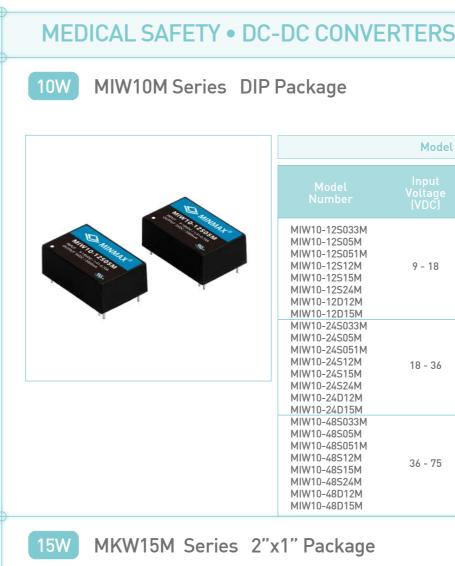
MSHU129 ±15 ±66 75% *There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

MEDICAL SAFETY • DC	-DC CONVI	ERTERS			
2W MDHU100 Series DI	P Package	ANSI/AAMI ES60601-1	CRUL 62368-1 Scher		
		Model S	election Guid	le	
	Model Number	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency
S→MINMAX [®] MDHU102 1 1543 (€.¶Å	MDHU102 MDHU104 MDHU105 MDHU108	4.5 - 5.5	5 12 15 ±12	400 165 133 ±83	66% 66% 72%
	MDHU109 MDHU112 MDHU114 MDHU115	10.8 - 13.2	±15 5 12 15	±66 400 165 133	73% 66% 66%
	MDHU118 MDHU119		±12 ±15	±83 ±66	74% 75%
	MDHU122 MDHU124		5 12	400 165	66% 66%
	MDHU125 MDHU128	21.6 - 26.4	15 ±12	133 ±83	66% 74%
	MDHU129		±15	±66	75%

3W



MIHW2000 Series DIP Package



Model Selection Guide					
l er	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency	
2		5	600	78%	
3	9 - 40	12	250	83%	
6	7 - 40	±12	±125	83%	
7		±15	±100	83%	
2		5	600	78%	
3	18 - 80	12	250	83%	
6	10 00	±12	±125	83%	
7		±15	±100	83%	
2		5	600	78%	
.3	0/ 1/0	12	250	83%	
.6	36 - 160	±12	±125	83%	
7		±15	±100	83%	

*There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

*There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

Model Selection Guide

r	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency
033M 05M 051M 02M 05M 024M 12M 15M	9 - 18	3.3 5 5.1 12 15 24 ±12 ±15	2700 2000 833 666 416 ±416 ±333	81% 84% 87% 88% 88% 88% 88%
)33M)5M)51M)2M 12M 12M 12M 12M	18 - 36	3.3 5 5.1 12 15 24 ±12 ±15	2700 2000 2000 833 666 416 ±416 ±333	81% 85% 85% 88% 88% 88% 88% 88% 88%
033M 05M 051M 02M 05M 05M 024M 12M 15M	36 - 75	3.3 5 5.1 12 15 24 ±12 ±15	2700 2000 2000 833 666 416 ±416 ±333	81% 85% 85% 88% 88% 87% 87% 87%

Model Selection Guide


r	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	Efficiency
05M 051M 12M 12M 24M 12M 12M	9 - 18	5 5.1 12 15 24 ±12 ±15	3000 3000 1250 1000 625 ± 625 ± 500	86% 86% 88% 88% 88% 88%
24M 12M 12M 12M 12M 12M 12M	18 - 36	5 5.1 12 15 24 ±12 ±15	3000 3000 1250 1000 625 ±625 ±500	88% 88% 89% 89% 90% 90% 89%
05M 051M 12M 15M 24M 12M 15M	36 - 75	5 5.1 12 15 24 ±12 ±15	3000 3000 1250 1000 625 ±625 ±500	88% 88% 90% 89% 89% 88%

*There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

MEDICAL SAFETY • DC-DC CONVERTERS MKW20M Series 2"x1" Package 20W **Model Selection Guide**

	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)max	
MKW20-12S05M MKW20-12S051M		5 5.1	4000 4000	86% 86%
MKW20-12S12M	9 - 18	12	1670	89%
MKW20-12S15M	7 - 10	15	1333	88%
MKW20-12S24M		24	840	89%
MKW20-12D12M		±12	±840	89%
MKW20-12D15M		±15	±670	89%
MKW20-24S05M		5	4000	88%
MKW20-24S051M		5.1	4000	88%
MKW20-24S12M		12	1670	89%
MKW20-24S15M	18 - 36	15	1333	89%
MKW20-24S24M		24	840	90%
MKW20-24D12M		±12	±840	90%
MKW20-24D15M		±15	±670	90%
MKW20-48S05M		5	4000	88%
MKW20-48S051M		5.1	4000	88%
MKW20-48S12M		12	1670	89%
MKW20-48S15M	36 - 75	15	1333	90%
MKW20-48S24M		24	840	89%
MKW20-48D12M		±12	±840	89%
MKW20-48D15M		±15	±670	90%

*There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

AYM-60 Series Encapsulated Package 60W

Model Selection Guide

		Output Voltage (VDC)		
05		5	3000	77%
09		9	2666	82%
12		12	2000	83%
15	85 - 264	15	1600	82%
24		24	1000	85%
12		±12	±1000	84%
15		±15	±800	84%

Model Selection Guide

		Output Voltage (VDC)		
05		5	8000	81%
12		12	3330	84%
15		15	2660	85%
24	85 - 264	24	1660	84%
12		±12	±1660	84%
15		±15	±1330	85%

Model Selection Guide

		Output Voltage (VDC)		
051		5.1	10000	84%
12		12	5000	87%
15	85 - 264	15	4000	87%
24		24	2500	87%
48		48	1250	88%

*There are different features & spec. by each series. For detailed series datasheet, please refer to www.minmaxpower.com

• DC-DC CONVERTERS

MINMAX POWER SOLUTIONS DC-DC CONVERTERS · AC-DC POWER SUPPLIES | 1-150W

ULTRA-HIGH ISOLATION

• DC-DC CONVERTERS

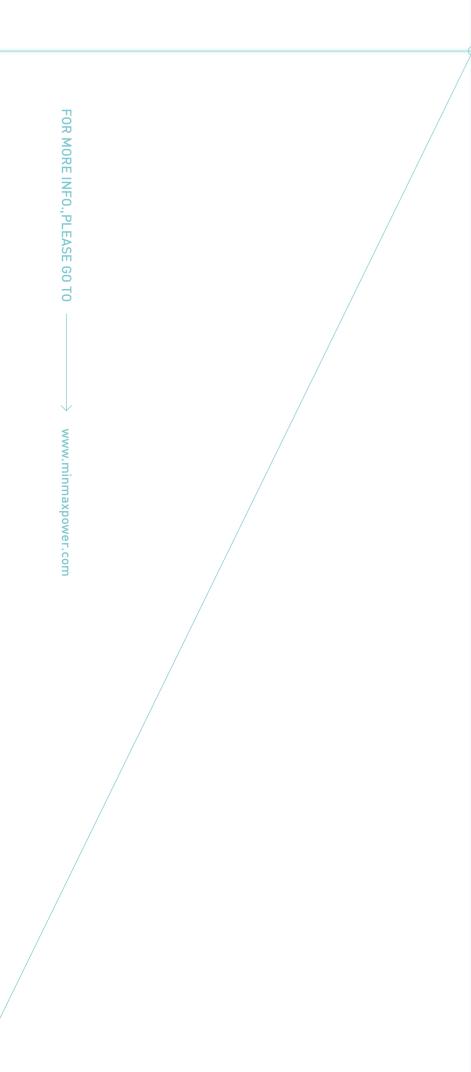
6-60W

15-20W

• DC-DC CONVERTERS

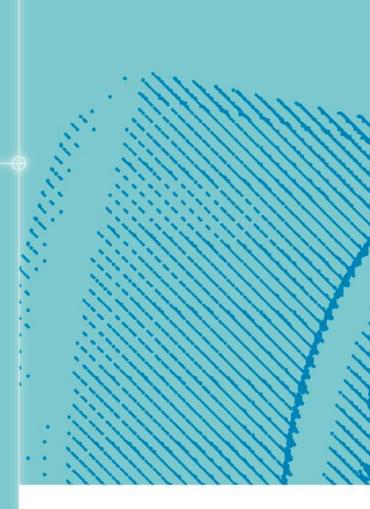
2-10W

15-20W



• AC-DC POWER SUPPLIES

POWER FOR A BETTER FUTURE



ADDRESS No.77,Sec.1,Zhonghua W.Rd., South Dist.,Tainan City 702,Taiwan

MAIL sales@minmax.com.tw

телерноме (+886) 6-2923150

^{FAX} (+886) 6-2923149

